• 제목/요약/키워드: Harmonics simulation

검색결과 507건 처리시간 0.021초

PCR과 인버터의 결합에 의한 고조파 해석 (The Harmonic Analysis for Inverter related with PCR)

  • 강설묵;구본호;권우현;김수중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.779-781
    • /
    • 1987
  • In phase controlled rectifier(PCR), harmonica are changed according to the variation of a firing angle. These harmonics are supplied with the input of the inverter. And then, inverter output comes about the harmonics combined with the switching frequency of the inverter. Hence the efficiency of the induction motor ia decreased by the harmonic of the inverter output. In this paper, it analyzed about an effect of these harmonics ia analyzed by a computer simulation. The total harmonic distortion (THD) in the case of PCR containing the ripple was considerably larger than THO of the DC source. Therefore, it was proved that the firing angle variation of PCR had to be limited.

  • PDF

유도전동기 구동을 위한 PWM 인버터의 고주파제거 및 전압제어의 구현 (Implementation of Harmonics Elimination and voltage Control of PWM Inverter for Induction Motor Driving)

  • 박충규;전희종;정헌상;강문석;김국진
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제6권1호
    • /
    • pp.40-48
    • /
    • 1992
  • In this paper, th technique of particular harmonics elimination in three-phase PWM Inverter is discussed. And voltage control technique is derived whereby harmonics elimination is possible in variable voltage variable frequency three-phase I.M.. The required switching patterns are determined on Personal Computer and the results are stored in look-up table in EPROM for controlling the switching of the PWM Inverter. The results show that experiments are in good agreement with simulation based on the theory.

  • PDF

Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

  • Abusara, Mohammad A.;Sharkh, Suleiman M.;Zanchetta, Pericle
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.518-529
    • /
    • 2015
  • Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

내부고장을 고려한 AF-SMES 시스템의 시뮬레이션 해석 및 제작에 관한 연구 (A Study on the Fabrication and Simulation Analysis of AF-SMES System considering Internal Fault Condition)

  • 김아롱;김재호;김해종;김석호;성기철;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1203-1204
    • /
    • 2006
  • Recently, utility network is getting more and more complicated and huge. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, according to the non-linear power semiconductor devices, current harmonics are unavoidable. Those current harmonics flow back to utility network and become one of the reasons which make the voltage distortion. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(Active Filter) systems could be a good solution method and SMES(Superconducting Magnetic Energy Storage) system is a very good promising source due to the high response time of charge and discharge. Therefore, the combined system of AF and SMES is a wonderful device to compensate both harmonics current and voltage sag. However, unfortunately SMES needs a superconducting magnetic coil. Because of the introduction of superconducting magnetic coil, quench problem caused by unexpected reasons is always existed. In case of discharge operation, quench is a significantly harmful factor according as it decreases the energy capacity of SMES. Therefore, this paper presents a decision method of the specification of the AF-SMES system considering internal fault condition. Especially, authors analyzed the change of the original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil. Finally, based on this simulation, authors manufactured actual Active Filter System using DSP.

  • PDF

Remote-Controlled Experiment with Integrated Verification of Learning Outcome

  • Staudt, Volker;Menzner, Stefan;Baue, Pavol
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.604-610
    • /
    • 2010
  • Experiments in electrical engineering should mirror the key components of successful research and development: Understand the basic theory needed, test the resulting concepts by simulation and verify these, finally, in the experiment. For optimal learning outcome continuous monitoring of the progress of each individual student is necessary, immediately repeating those subjects which have not been learned successfully. Classically, this is the task of the teacher. In case of remote-controlled experiments this monitoring process and the repetition of subjects should be automated for optimal learning outcome. This paper describes a remote-controlled experiment combining theory, simulation and the experiment itself with an automated monitoring process. Only the evaluation of the experimental results and their comparison to the simulation results has to be checked by a teacher. This paper describes the details of the educational structure for a remote-controlled experiment introducing active filtering of harmonics. For better understanding the content of the learning material (theory and simulation) as well as the results of the experiment and the underlying booking system are shortly presented.

Random Pulse Position PWM 방식을 적용한 IPMSM 기반 차세대 고속전철 구동 인버터 시스템의 고조파 저감 (Reducing Harmonics of the Next-generation High-speed Railway Inverter System by Random Pulse Position Modulation Technique based on Space Vector Modulation)

  • 이상현;진강환;김성제;노애숙;김윤호
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.94-101
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system based on IPMSM drives using Random Pulse Position Modulation is proposed to reduce electromagnetic noise. To verify the validity of study, the simulator for the proposed system is designed and impplemented. Simulation program is developed using Matlab/Simulink. The simulation results of the proposed system was compared with the system using conventional method. The results show that the voltage and current harmonics of the proposed Next Generation High Speed Railway Inverter system. significantly decrease and spread into wide band area by the proposed Random Pulse Position modulation technique based on Space Vector Modulation method.

특정 고조파 제거를 위한 Cascaded H-bridge 7레벨 인버터의 특성해석 및 시뮬레이션 (Analysis and simulation of Cascaded H-bridge 7 level inverter for eliminating typical harmonic waveforms)

  • 진선호;오진석;조관준;곽준호;임명규;김장목
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1022-1028
    • /
    • 2005
  • This paper is presented the analysis results and simulation results of cascaded H-bridge 7 level inverter with various modulation index. Stepped waveform having number of switching was used to eliminate harmonic components. Switching angles according to modulation index are calculated numerically. Therefore, 3 times of switching with 7 level topology and QWS(Quarter Wave Symmetry) could eliminate 5th and 7th harmonics. The harmonic characteristics are compared to those of space vector modulation method which known as common modulation method in industrial field. Stepped waveform method showed higher ability to reduce, especially lower order of harmonics.

  • PDF

Design and Implementation of a Multi Level Three-Phase Inverter with Less Switches and Low Output Voltage Distortion

  • Ahmed, Mahrous E.;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.593-603
    • /
    • 2009
  • This paper proposes and describes the design and operational principles of a three-phase three-level nine switch voltage source inverter. The proposed topology consists of three bi-directional switches inserted between the source and the full-bridge power switches of the classical three-phase inverter. As a result, a three-level output voltage waveform and a significant suppression of load harmonics contents are obtained at the inverter output. The harmonics content of the proposed multilevel inverter can be reduced by half compared with two-level inverters. A Fourier analysis of the output waveform is performed and the design is optimized to obtain the minimum total harmonic distortion. The full-bridge power switches of the classical three-phase inverter operate at the line frequency of 50Hz, while the auxiliary circuit switches operate at twice the line frequency. To validate the proposed topology, both simulation and analysis have been performed. In addition, a prototype has been designed, implemented and tested. Selected simulation and experimental results have been provided.

Hybrid RPWM을 적용한 IPMSM 기반 차세대 고속전철 인버터 구동 시스템의 소음원 고조파 저감 (Reducing Noise Source Harmonics of the Next-Generation High-Speed Railway Inverter System Using Hybrid RPWM Technique)

  • 이상현;진강환;김성제;박영호;김윤호
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.1061-1068
    • /
    • 2012
  • In this paper, The Next Generation High Speed Railway inverter system using Hybrid Random Pulse Width Modulation (Hybrid RPWM) is proposed to reduce electromagnetic noise. To verify the validity of study, simulation results of the Next Generation High Speed Railway Inverter system using the proposed method was compared with the system using conventional method. A simulation program is developed using Matlab/Simulink. The results show that the voltage and current harmonics of the Next Generation High Speed Railway Inverter system using Hybrid RPWM significantly decrease and spread into wide band area.