• Title/Summary/Keyword: Harmonics Balance Method

Search Result 10, Processing Time 0.023 seconds

DEVELOPMENT OF EFFICIENT HARMONIC BALANCE METHOD WITH THE MULTIGRID METHOD (다중격자 기법이 적용된 효율적인 조화 균형법 개발)

  • Im, D.K.;Park, S.H.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.76-84
    • /
    • 2010
  • In order to analyze the periodic unsteady flow problem efficiently the partially implicit harmonic balance (PIHB) method was developed. Contrary to the existing harmonic balance method, this method handles the harmonic source term explicitly and deals with flux terms implicitly. This method has a good convergence in comparison with the full explicit harmonic method and it is easy to apply this method because there is no need to calculate the complicated flux Jacobian term by comparing with the full implicit harmonic method. With the multigrid method about the each harmonic it turns out that this method has a good convergence regardless of the number of harmonics. The oscillating flows over NACA0012 airfoil is considered to verify this method then the result correponsed to both the result of dual time stepping and explicit Runge-Kutta method.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.

Limit Cycle Application to Friction Identification and Compensation (한계사이클을 이용한 마찰력의 규명 및 보상)

  • Kim Min-Seok;Kim Myoung-Zoo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.938-946
    • /
    • 2005
  • Friction is a dominant nonlinear factor in servomechanisms, which seriously deteriorates system accuracy. A friction compensator is indispensable to fabricate high-performance servomechanisms. In order to compensate for the friction in the servomechanism, identification of the friction elements is required. To estimate the friction of the servomechanism, an accurate linear element model of the system is required first. Tn this paper, a nonlinear friction model, in which static, coulomb and viscous frictions as well as Stribeck effect are included, is identified through the describing function approximation of the nonlinear element. A nonlinear element composed of two relays is intentionally devised to induce various limit cycle conditions in the velocity control loop of the servomechanism. The friction coefficients are estimated from the intersection points of the linear and nonlinear elements in the complex plane. A Butterworth filter is added to the velocity control loop not only to meet the assumption of the harmonic balance method but also to improve the accuracy of the friction identification process. Validity of the proposed method is confirmed through numerical simulations and experiments. In addition, a model-based friction compensator is applied as a feedforward controller to compensate fur the nonlinear characteristics of the servomechanism and to verify the effectiveness of the proposed identification method.

Finite Element Method using Complex Harmonics for analyzing saturation characteristics (포화 특성 해석을 위한 복소 고조파 유한 요소해석법)

  • Chung, Yong-Seek;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.11-14
    • /
    • 1990
  • The Complex Harmonic Balance Finite Element Method CHBFEM ) is dicussed for the time - periodic magnetic field with saturation characteristics. And Jw - method which is used for analyzing liner system with sinusoidal voltage input can be generalized in nonlinear time-periodic magnetio field system. The CHBFEM enables us to calculate the each harmonic magnetic flux ditribution and the distortion of currents resulting from material at an AC voltage source and to save calculating time, the number of calculation and computer memory.

  • PDF

A NEW CONTROL METHOD FOR CURRENT SHARING IN THE 12-PULSE PHASE-CONTROLLED RECTIFIER

  • Min, Byoung-Gwon;Baek, Byung-San;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.581-585
    • /
    • 1998
  • This paper presents the new current sharing control method of a 12-pulse phase-controlled rectifier(PCR) for a UPS. The control circuit of the 12-Pulse PCR with a parallel operating rectifier system is proposed to balance input currents and to reduce the harmonics of input current. The PCR is used widely in the industrial world, since its cost is much lower than that of the PWM converter and the composition of control circuits is simple. This system is developed and tested for a 3-phase 400KVA UPS system and the experimental results in this application are included.

  • PDF

DC Link Voltage Control for Single-Phase GTO PWM Converter (단상 GTO PWM 컨버터의 직류링크 전압제어)

  • Lee, O-Jae;Lee, Dong-Choon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.117-120
    • /
    • 1993
  • In this paper, a novel DC link voltage control scheme for a single-phase PWM converter is proposed. The main idea of the control scheme is eliminating the effect of dc link voltage harmonics by using power balance of input side and output side. With the proposed strategy, faster transient response than that of conventional method using low-pass filter can be obtained. In addition, a half period current control, based at equal switching frequency, is proposed. The validity of the proposed scheme is verified by simulation results for GTO PWM converter system.

  • PDF

A Single-Phase Hybrid Multi-Level Converter with Less Number of Components

  • Kim, Ki-Mok;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.105-107
    • /
    • 2018
  • This paper presents a new hybrid multilevel converter topology, which consists of a combination of the series connected switched capacitor units with boost ability, and an H-bridge with T-type bidirectional switches. The proposed converter boosts the input voltage without any bulky inductors, and has the small number of components, which can make the size and cost of a power converter greatly reduced. The output filter size and harmonics are also reduced by the high quality multilevel output. In addition, there is no need for complicated methods to balance the capacitor voltage. Simulation and experimental results with a nine-level converter system are presented to validate the proposed topology and modulation method.

  • PDF

Geopotentinl Field in Nonlinear Balance with the Sectoral Mode of Rossby-Haurwitz Wave on the Inclined Rotation Axis (섹터모드의 로스비하우어비츠 파동과 균형을 이루는 고도장)

  • Cheong, Hyeong-Bin;Park, Ja-Rin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.936-946
    • /
    • 2007
  • Analytical geopotential field in balance with the sectoral mode (the first symmetric mode with respect to the equator) of the Rossby-Haurwitz wave on the inclined rotation axis was derived in presence of superrotation background flow. The balanced field was obtained by inverting the divergence equation with the time derivative being zero. The inversion consists of two steps, i.e., the evaluation of nonlinear forcing terms and the finding of analytical solutions based on the Poisson's equation. In the second step, the forcing terms in the from of Legendre function were readily inverted due to the fact that Legendre function is the eigenfunction of the spherical Laplacian operator, while other terms were solved either by introducing a trial function or by integrating the Legendre equation. The balanced field was found to be expressed with six zonal wavenumber components, and shown to be of asymmetric structure about the equator. In association with asymmetricity, the advantageous point of the balanced field as a validation method for the numerical model was addressed. In special cases where the strength of the background flow is a half of or exactly the same as the rotation rate of the Earth it was revealed that one of the zonal wavenumber components vanishes. The analytical balanced field was compared with the geopotential field which was obtained using a spherical harmonics spectral model. It was found that the normalized difference lied in the order of machine rounding, indicating the reliability of the analytical results. The stability of the sectoral mode of Rossby-Haurwitz wave and the associated balanced field was discussed, comparing with the flrst antisymmetric mode.