• Title/Summary/Keyword: Harmonic constant

Search Result 215, Processing Time 0.026 seconds

Novel Current Compensation Technique for Harmonic Current Elimination (고조파 전류 제거를 위한 새로운 전류 보상 기법)

  • Jeong Gang-Youl
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.587-591
    • /
    • 2004
  • This paper proposes a novel current compensation technique that can eliminate the harmonic currents included in line currents without computation of harmonic current components. A current controller with fast dynamics for an active filter is described. Harmonic currents are directly controlled without the need for sensing and computing the harmonic current of the load current, thus simplifying the control system. Current compensation is done in the time domain, allowing a fast time response. The DC voltage control loop keeps the voltage across the DC capacitor constant. High power factor control by an active filter is described. All control functions are implemented in software using a single-chip microcontroller, thus simplifying the control circuit. Any current-controlled synchronous rectifier can be used as a shunt active filter through only the simple modification of the software and the addition of current sensors. It is shown through experimental results that the proposed controller gives good performance for the shunt active filter.

  • PDF

STABLE f-HARMONIC MAPS ON SPHERE

  • CHERIF, AHMED MOHAMMED;DJAA, MUSTAPHA;ZEGGA, KADDOUR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.471-479
    • /
    • 2015
  • In this paper, we prove that any stable f-harmonic map ${\psi}$ from ${\mathbb{S}}^2$ to N is a holomorphic or anti-holomorphic map, where N is a $K{\ddot{a}}hlerian$ manifold with non-positive holomorphic bisectional curvature and f is a smooth positive function on the sphere ${\mathbb{S}}^2$with Hess $f{\leq}0$. We also prove that any stable f-harmonic map ${\psi}$ from sphere ${\mathbb{S}}^n$ (n > 2) to Riemannian manifold N is constant.

Steady-State Performance Improvement of Single-Phase PWM Inverters Using PLL Technique (PLL 기법을 이용한 단상 PWM 인버터의 정상상태 성능개선)

  • 정세교;이대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.356-363
    • /
    • 2004
  • This paper presents a precision voltage control technique of a single phase PWM inverter for a constant voltage and constant frequency(CVCF) applications. The proposed control scheme employs an additional phase-locked loop(PLL) compensator which is constructed using the output capacitor voltage and current. The computer simulation and experiment are carried out for the actual single-phase PWM inverter and it is well demonstrated from these results that the steady-state performance and total harmonic distortion(THD) are remarkably improved by employing the proposed technique.

A Study on the Harmonic Characteristics of GHP Cooling/Heating Load in an Institutional Building (교육용 건물의 GHP 냉/난방 부하의 고조파 특성에 관한 연구)

  • Kim, Kyung-Chul;Oh, Kyung-Hoon;Lee, Kyu-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.29-38
    • /
    • 2009
  • The GHP(Gas Heat Pump) is an efficient cooling;11eating system in which a compressor is driven by a gas engine and is brodening its application to the facilities such as schools and office buildings. It is difficult to control the GHP system because of slow response, big time constant and time variant system. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. A cumulative probability approach is the most commonly used method to solve time varying harmonics. This paper provides an in depth analysis on harmonics field measurement of the GHP loads, harmonic assessment by me 61000-3-2, and harmonic simulation and harmonic filter application using EDSA program for the case study system.

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.

Study on the Vibration Analysis of Damper Clutch Spring (댐퍼 클러치 스프링의 진동 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.

A NONEXISTENCE THEOREM FOR STABLE EXPONENTIALLY HARMONIC MAPS

  • Koh, Sung-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.211-214
    • /
    • 1995
  • Let M and N be compact Riemannian manifolds and $f : M \to N$ be a smooth map. Following J. Eells, f is exponentially harmonic if it represents a critical point of the exponential energy integral $$ E(f) = \int_{M} exp(\left\$\mid$ df \right\$\mid$^2) dM $$ where $(\left\ df $\mid$\right\$\mid$^2$ is the energy density defined as $\sum_{i=1}^{m} \left\$\mid$ df(e_i) \right\$\mid$^2$, m = dimM, for orthonormal frame $e_i$ of M. The Euler- Lagrange equation of the exponential energy functional E can be written $$ exp(\left\$\mid$ df \right\$\mid$^2)(\tau(f) + df(\nabla\left\$\mid$ df \right\$\mid$^2)) = 0 $$ where $\tau(f)$ is the tension field along f. Hence, if the energy density is constant, every harmonic map is exponentially harmonic and vice versa.

  • PDF

ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2007
  • We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends($1) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to $\mathbf{R}^l$, where $l$ is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with $\mathbf{R}^l$.

A LIOUVILLE TYPE THEOREM FOR HARMONIC MORPHISMS

  • Jung, Seoung-Dal;Liu, Huili;Moon, Dong-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.941-947
    • /
    • 2007
  • Let M be a complete Riemannian manifold and let N be a Riemannian manifold of nonpositive scalar curvature. Let ${\mu}0$ be the least eigenvalue of the Laplacian acting on $L^2-functions$ on M. We show that if $Ric^M{\ge}-{\mu}0$ at all $x{\in}M$ and either $Ric^M>-{\mu}0$ at some point x0 or Vol(M) is infinite, then every harmonic morphism ${\phi}:M{\to}N$ of finite energy is constant.

Derivation and Numerical Verification of Harmonic Oscillatory Description of Ferromagnetic Vortex Motion (강자기 소용돌이의 단조화 운동 유도 및 수치 검증)

  • Kim, Jun-Yeon;Choe, Sug-Bong
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.127-130
    • /
    • 2008
  • We report a theoretical description of ferromagnetic vortex motion in sub-micrometer size magnetic thin film. Based on Thiele's equation combined with later theoretical achievements, we derive the analytic description of dynamics of ferromagnetic vortex core as a damped harmonic oscillatory motion. Consequently, the relations about frequency and damping constant in damped harmonic oscillation are presented. The validity of the results is verified through micromagnetic simulation.