References
- M. Ara, Geometry of F-harmonic maps, Kodai Math. J. 22 (1999), no. 2, 243-263. https://doi.org/10.2996/kmj/1138044045
- M. Ara, Instability and nonexistence theorems for F-harmonic maps, Illinois J. Math. 45 (2001), no. 2, 657-679.
- M. Ara, Stability of F-harmonic maps into pinched manifolds, Hiroshima Math. J. 31 (2001), no. 1, 171-181.
- P. Baird and J. C.Wood, Harmonic Morphisms between Riemannian Manifolds, Clarendon Press Oxford 2003.
-
R. Caddeo, S. Montaldo, and C. Oniciuc, Biharmonic submanifolds of
${\mathbb{S}}^3$ , Internat. J. Math. 12 (2001), no. 8, 867-876. https://doi.org/10.1142/S0129167X01001027 - A. M. Cherif and M. Djaa, On generalized f-Harmonic morphisms, Comment. Math. Univ. Carolin. 55 (2014), no. 1, 17-27.
- N. Course, f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423-435.
- M. Djaa and A. M. Cherif, On generalized f-biharmonic maps and stress f-bienergy tensor, J. Geometry Symmetry Phys. 29 (2013), 65-81.
- M. Djaa, A. M. Cherif, K. Zagga, and S. Ouakkas, On the generalized of harmonic and bi-harmonic maps, Int. Electron. J. Geom. 5 (2012), no. 1, 90-100.
- J. Eells and J. C. Wood, Maps of minimum energy, J. London Math. Soc. (2) 23 (1981), no. 2, 303-310.
- R. Howard and S. W. Wei, Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc. 294 (1986), no. 1, 319-331. https://doi.org/10.1090/S0002-9947-1986-0819950-4
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol 1 and 2, Wiley Classics Library February 22, 1996.
- P. F. Leung, On the stability of harmonic maps, Lecture Notes in Mathematics 949, 122-129, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- W. J. Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math. 58 (2015), no. 7, 1483-1498. https://doi.org/10.1007/s11425-015-4997-1
- Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math. J. 38 (1986), no. 2, 259-267. https://doi.org/10.2748/tmj/1178228492
- S. Ouakkas, R. Nasri, and M. Djaa, On the f-harmonic and f-biharmonic maps, J. Geom. Topol. 10 (2010), no. 1, 11-27.
- P. Petersen, Riemannian Geometry, 2nd edition, New York, Springer-Verlag, GTM 171, 2006.
- M. Svensson, Polynomial harmonic morphism, Lunds Universitet, November 1998.
- Y. L. Xin, Some result on stable harmonic maps, Duke Math. J. 47 (1980), no. 3, 609-613. https://doi.org/10.1215/S0012-7094-80-04736-5
- Y. L. Xin, Geometry of Harmonic Maps, Birkhauser Boston, 1996.
- K. Zegga, M. Djaa, and A. M. Cherif, On the f-biharmonic maps and submanifolds, Kyungpook Math. J. 55 (2015), no. 1, 157-68. https://doi.org/10.5666/KMJ.2015.55.1.157
Cited by
- Stability of λ-Harmonic Maps vol.6, pp.6, 2018, https://doi.org/10.3390/math6060094