DOI QR코드

DOI QR Code

STABLE f-HARMONIC MAPS ON SPHERE

  • Received : 2015.04.09
  • Published : 2015.10.31

Abstract

In this paper, we prove that any stable f-harmonic map ${\psi}$ from ${\mathbb{S}}^2$ to N is a holomorphic or anti-holomorphic map, where N is a $K{\ddot{a}}hlerian$ manifold with non-positive holomorphic bisectional curvature and f is a smooth positive function on the sphere ${\mathbb{S}}^2$with Hess $f{\leq}0$. We also prove that any stable f-harmonic map ${\psi}$ from sphere ${\mathbb{S}}^n$ (n > 2) to Riemannian manifold N is constant.

Keywords

References

  1. M. Ara, Geometry of F-harmonic maps, Kodai Math. J. 22 (1999), no. 2, 243-263. https://doi.org/10.2996/kmj/1138044045
  2. M. Ara, Instability and nonexistence theorems for F-harmonic maps, Illinois J. Math. 45 (2001), no. 2, 657-679.
  3. M. Ara, Stability of F-harmonic maps into pinched manifolds, Hiroshima Math. J. 31 (2001), no. 1, 171-181.
  4. P. Baird and J. C.Wood, Harmonic Morphisms between Riemannian Manifolds, Clarendon Press Oxford 2003.
  5. R. Caddeo, S. Montaldo, and C. Oniciuc, Biharmonic submanifolds of ${\mathbb{S}}^3$, Internat. J. Math. 12 (2001), no. 8, 867-876. https://doi.org/10.1142/S0129167X01001027
  6. A. M. Cherif and M. Djaa, On generalized f-Harmonic morphisms, Comment. Math. Univ. Carolin. 55 (2014), no. 1, 17-27.
  7. N. Course, f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423-435.
  8. M. Djaa and A. M. Cherif, On generalized f-biharmonic maps and stress f-bienergy tensor, J. Geometry Symmetry Phys. 29 (2013), 65-81.
  9. M. Djaa, A. M. Cherif, K. Zagga, and S. Ouakkas, On the generalized of harmonic and bi-harmonic maps, Int. Electron. J. Geom. 5 (2012), no. 1, 90-100.
  10. J. Eells and J. C. Wood, Maps of minimum energy, J. London Math. Soc. (2) 23 (1981), no. 2, 303-310.
  11. R. Howard and S. W. Wei, Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc. 294 (1986), no. 1, 319-331. https://doi.org/10.1090/S0002-9947-1986-0819950-4
  12. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  13. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol 1 and 2, Wiley Classics Library February 22, 1996.
  14. P. F. Leung, On the stability of harmonic maps, Lecture Notes in Mathematics 949, 122-129, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
  15. W. J. Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math. 58 (2015), no. 7, 1483-1498. https://doi.org/10.1007/s11425-015-4997-1
  16. Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math. J. 38 (1986), no. 2, 259-267. https://doi.org/10.2748/tmj/1178228492
  17. S. Ouakkas, R. Nasri, and M. Djaa, On the f-harmonic and f-biharmonic maps, J. Geom. Topol. 10 (2010), no. 1, 11-27.
  18. P. Petersen, Riemannian Geometry, 2nd edition, New York, Springer-Verlag, GTM 171, 2006.
  19. M. Svensson, Polynomial harmonic morphism, Lunds Universitet, November 1998.
  20. Y. L. Xin, Some result on stable harmonic maps, Duke Math. J. 47 (1980), no. 3, 609-613. https://doi.org/10.1215/S0012-7094-80-04736-5
  21. Y. L. Xin, Geometry of Harmonic Maps, Birkhauser Boston, 1996.
  22. K. Zegga, M. Djaa, and A. M. Cherif, On the f-biharmonic maps and submanifolds, Kyungpook Math. J. 55 (2015), no. 1, 157-68. https://doi.org/10.5666/KMJ.2015.55.1.157

Cited by

  1. Stability of λ-Harmonic Maps vol.6, pp.6, 2018, https://doi.org/10.3390/math6060094