• Title/Summary/Keyword: Harmonic Balance Method

Search Result 72, Processing Time 0.037 seconds

A State Space Analysis on the Stability of Periodic Orbit Predicted by Harmonic Balance

  • Sung, Sang-Kyung;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.5-67
    • /
    • 2001
  • A closed loop system with a linear plant and nonlinearity in the feedback connection is analyzed for its quasi-static orbital stability by a state-space approach. First a periodic orbit is assumed to exist in the loop which is determined by describing function method for the given nonlinearity. This is possible by selecting a proper nonlinearity and a rigorous justification of the describing function method.[1-3, 18, 20]. Then by introducing residual operator, a linear perturbed model can be formulated. Using various transformations like a modified eigenstructure decomposition, periodic-averaging, charge of variables and coordinate transformation, the stability of the periodic orbit, as a solution of harmonic balance, can be shown by investigating a simple scalar function and result of linear algebra. This is ...

  • PDF

Modelling and Analysis of a Vibrating System Incorporating a Viscoelastic Damper (비선형 점탄성 댐퍼를 포함한 진동시스템의 모델링 및 해석)

  • Yang, Seong-Young;Chang, Seo-Il;Kim, Sang-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.449-454
    • /
    • 2000
  • A three-parameter model of viscoelastic damper, which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by three-dimensional non-linear dynamical system of equations. The harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time integration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Design and Implementation of High Pouter Amplifier for IMT-2000 Repeater (IMT-2000 중계기용 전력증폭기의 설계 및 제작)

  • 황상훈;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.185-188
    • /
    • 2001
  • In this paper, we design and implement high-power amplifier with 18 watt for W-CDMA repeater. We simulate microwave circuits using RF simulator, ADS1.3 and optimize the circuit to obtain the linear and high power using Harmonic balance method. Harmonic balance is an excellent method in the analysis of nonlinear system. The HPA is fabricated on tefron substrate($\varepsilon_{{\gamma}}$=3.48, h=0.5mm, T=0.035mm). From the measured result, the HPA has gain of 52dB, 1 dB compression power of 52.8dBm and good ACPR (Adjacent Channel Power Radio) performance.l Power Radio) performance.

  • PDF

Dynamic Stability Analysis of a Single Cam Drive Mechanism (단일 캠 구동기구의 동 안정성 해석)

  • 김홍보;전혁수;이종원;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.526-533
    • /
    • 1990
  • The dynamic stability of a single cam drive mechanism is investigated by an analytical approach. The nonlinear differential equation describing the motion of a single cam drive mechanism is linearized with respect to the imput power angle, and results a linear parametric differential equation. The instability region is examined by applying the harmonic balance method to linearized parametric equation having periodicity. Through the dynamic stability analysis of a single cam drive mechanism, it is observed that the parametric resonances exist and the instability regions tend to become wide as increasing the drive speed and follower mass.

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

Nonlinear Dynamic Characteristics of Gear Driving Systems with Periodic Meshing Stiffness Variation and Backlash (주기적 물림강성 변화와 백래쉬에 의한 기어구동계의 비선형 동특성)

  • Cho, Yun-Su;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.921-928
    • /
    • 2002
  • Main sources of the nitration of a gear-pair system are backlash and transmission error, the difference between required and actual rotation during gear meshing. This paper presents the nonlinear dynamic characteristics of gear motions due to the existence of backlash and periodic variation of meshing stiffness, which is assumed as a one-term harmonic component. Gear motions are classified as three types with the consideration of backlash. Each response is calculated using the harmonic balance method and confirmed by numerical integration. The responses with the increase of the rotating speed show abrupt changes in its magnitude for the variation of the preload, exciting force, and damping coefficient. The result also shows that there is a chaotic motion with some specific design parameters and operating conditions In gear diving system. Consequently the design of gear driving system with low nitration and noise requires the study on the effects of nonlinear dynamic characteristics due to stiffness variation and backlash.

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

A Study on the Nonlinear and Linear Analysis of Microwave Diode Mixer (마이크로波 다이오드 混合器의 非線形 및 線形解析에 關한 硏究)

  • Park, Eui-Joon;Park, Cheong-Kee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.7-15
    • /
    • 1989
  • A technique is suggested which enables the large signal current and voltage waveforms to be determined for a GaAs Schottky-Barrier diode mixer by extracting the algorithm for the nonlinear circuit analysis from the Gauss-Jacobi relaxation and the application of the Harmonic Balance Technique. Both the nonlinear and linear steps of the analysis are included. This analysis permitts accurate determination of the conversion loss for microwave mixer and the computer simulation provides an method applicable to MMIC design. The validity of the nonlinear and linear analysis is confirmed by comparing the simulation results with experimental data of the conversion loss.

  • PDF

Nonlinear dynamic characteristic of sandwich graphene platelet reinforced plates with square honeycomb core

  • Mamoon A.A. Al-Jaafari;Ridha A. Ahmed;Raad M. Fenjan;Nadhim M. Faleh
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.659-667
    • /
    • 2023
  • Nonlinear forced vibration behaviors of sandwich plates having graphene platelets (GPL) based face sheets have been researched in this article. Possessing low weight together with low stiffness, square honeycomb cores are mostly constructed by aluminum. Herein, the square shaped core has been fortified by two skins of GPL-based type in such a way that the skins have uniform and linearly graded GPL dispersions. The square shaped core has the effective material specification according to the relative density concept. The whole formulation has been represented based upon classical plate theory (CPT) while harmonic balance approach is applied for solving the problem and plotting the amplitude-frequency curves. The forced vibration behaviors of such plates are influenced by square-shaped core and the relative density, skin's height and GPL fortification.

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.