• Title/Summary/Keyword: Harmful microorganisms

Search Result 94, Processing Time 0.029 seconds

Inhibition Effect of the Harmful Food-Born Microorganisms on Germination Condition of Acorn Pollen (도토리 화분의 발아 조건에 따른 식품유해균 억제효과)

  • Choi, Jun-Hyug;Yim, Ga-Young;Jang, Se-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.87-93
    • /
    • 2007
  • This study investigated the antimicrobial effect of germinated acorn pollen solution on harmful food-borne microorganisms. The antimicrobial activity when 8% (w/v) acorn pollen in 10% (w/v) sugar solution was extracted at $30^{\circ}C$ for 4 days. The minimal inhibitory concentration of this germinated acorn pollen solution was $40\;{\mu}L/mL$ for Gram-positive bacteria and $30\;{\mu}L/mL$ for Gram-negative bacteria. Acetic and lactic acids were present at high levels in germinated acom pollen solution. As pollen germination releases heat, the antimicrobial activities are heat-stable. The activities are tolerant of low pH. In summary, acorn pollen germination solution showed active antibiosis and should be developed as a natural preservative material.

A Case Study on the Brand Development of Odor-reducing Feed Additives

  • Gok Mi Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.194-200
    • /
    • 2024
  • In the past, antibiotics and antimicrobial substances have been used for the purpose of promoting the growth of livestock or treating livestock, but various problems such as the presence of livestock products or resistant bacteria have emerged. Recently, regulations on the use of antibiotics have been strengthened worldwide, and probiotics are attracting attention as an alternative. Probiotic microorganisms have already been used for human use, such as intestinal abnormal fermentation, diarrhea, and indigestion. In livestock, beneficial microorganisms are increasing in use for the purpose of improving productivity, such as promoting livestock development and preventing diarrhea. Therefore, it is advisable to understand livestock probiotics in deeper and think about effective uses. The role of probiotics in the livestock sector is made with microorganisms themselves, so it is a substance that promotes livestock growth and improves feed efficiency by settling in the intestines of livestock, suppressing the growth of other harmful microorganisms, helping digestion and absorption of ingested feed, and helping to synthesize other nutrients. There is a need for a probiotic that suppresses intestinal bacteria by supplying probiotics used as a means to minimize the effects of stress in livestock management, thereby suppressing disease outbreaks by maintaining beneficial microorganisms and suppressing pathogenic microorganisms. The purpose of this paper is to develop a brand of feed additive probiotics to improve health conditions due to increased feed intake, improve the efficiency of use of feed nutrients, inhibit the decomposition and production of toxic substances, increase immunity, reduce odor in livestock, and improve the environment. We investigated and analyzed feed additive probiotics already on the market, and developed the naming and logo of suitable feed additive probiotic brands in livestock. We hoped that the newly developed product will be used in the field and help solve problems in the livestock field.

Effects of the Water Extract of Akebia (Akebia quinata Edcaisne) on the Growth of Clotridium perfringens and Some Intestinal Microorganisms (목통 (Akebia quinata Decaisne)의 물추출물이 Clostridium perfringens 및 주요 장내미생물의 생육에 미치는 영향)

  • 한복진;우상규;신현경
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.633-640
    • /
    • 1995
  • As a result of screening the medicinal herbs which selectively control human intestinal microflora, water extract of Akebia quinata Decaisne was proved to have a strong inhibitory activity against the growth of Clostridium pefringens, a major harmful intestinal bacterium. The anti-bacte-rial activity was stable under the thermal treatment at 100$\circ$C for 120 min and in a range of pH 1 to 11. In addition, the water extract of Akebia quinata Decaisne showed the antibacterial activities against five different strains of Clostridia including C. perfringens. On the contrary, the extract did not inhibit the growths of Bifidobacterium, Lactobacillus, Escherichia coli, Enterococcus faecalis. The extract, however, suppressed markedly the growth of Bacteroides fragilis and Staphylococcus aureus in vitro. Alike in the mixed culture inoculated with human feces as starter, in vivo tests using rats showed that the extract tends to increase the numbers of Bifidobacteria and Lactobacilli in the intestinal microflora of rats, whereas those of Clostridia were attenuated.

  • PDF

In-situ microbial colonization and its potential contribution on biofilm formation in subsurface sediments

  • Lee, Ji-Hoon;Lee, Bong-Joo;Yun, Uk;Koh, Dong-Chan;Kim, Soo Jin;Han, Dukki;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • Biofilms facilitate communication among microorganisms for nutrients and protect them from predators and harmful chemicals such as antibiotics and detergents. Biofilms can also act as cores for the development of clogs in many agricultural irrigation systems and in porous media. In this study, we deployed glass units at a depth of 20 m below the ground surface in the groundwater-surface water mixing zone, and retrieved them after 4 months to investigate the potential colonization of indigenous microbial community and possible mineral-microbe assemblages. We observed the periodic formation of microbial colonies by fluorescence dye staining and microscopy, and analyzed the composition of the microbial community in both the mineral-microbe aggregates and groundwater, by next generation sequencing of the 16S rRNA gene amplicons using MiSeq platform. During the course of incubation, we observed an increase in both the mineral-microbe aggregates and content of extracellular polymeric substances. Interestingly, the microbial community from the aggregates featured a high abundance of iron redox-related microorganisms such as Geobacter sp., Comamonadaceae sp., and Burkholderiales incertae sedis. Therefore, these microorganisms can potentially produce iron-minerals within the sediment-microbe-associated aggregates, and induce biofilm formation within the groundwater borehole and porous media.

Analysis of Harmful Microorganisms in Raw Cereal Materials and Processing Environment for Sunsik (선식용 곡류원료의 위해미생물 제거를 위한 세척방법에 따른 효과)

  • Kim, Jin-Hee;Yang, Ji-Young
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.565-568
    • /
    • 2012
  • There are various kinds of cereals used in sunsik manufacturing. Different harmful microorganisms that can contaminate these cereals have been reported. According to the different sizes of cereals used, black bean, black rice, and millet were artificially contaminated with Escherichia $Coli.$ $E.$ $coli$ contamination in cereal samples was detected after different washing steps under different conditions. The increase of washing time did not have any effect with regard to reducing $E.$ $coli$ in samples. Among several ratios between the washing solution and sample, 2:1 that have little influence to reduce $E.$ $coli$ contamination have been determined. The temperature of the washing solution is an influencing factor as well. Washing with solution at $40^{\circ}C$ could reduce 1 log of $E.$ $coli$ in samples. Among different concentrations of saline used as a washing solution, 5% could reduce 2~3 log $E.$ $coli$ in contaminated samples. However, the saline adds a salty taste to cereals when used during the washing step. To remove that, an extra washing step and large amount of washing solution are necessary in sunsik manufacturing.

Glycine max Merr enhances the viability and adhesion ability of Lactobacillus buchneri in gastrointestinal condition in vitro.

  • Seo, Jae-Bin;Park, Bog-Im;Myung, Hyun;Sim, Hyeon-Jae;Lee, Hoon-Yeon;Kim, Seong-Oh;Song, Kyoung-Ha;Lee, So-Jin;Cho, Jung Hee;Jeon, Yong-Deok;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.127-127
    • /
    • 2018
  • Probiotics are microorganisms that have beneficial effects on the health of the host. The health promoting effect by probiotics influences suppressing harmful bacteria, prevention of constipation, blood cholesterol reduction and regulation of blood pressure. Prebiotics are used to promote the growth or activity of microorganisms. Synbiotics, which are a mixture of probiotics and prebiotics, synergize in the intestines by complementing each other. Synbiotics not only improves the viability of the probiotics while passing through the gastrointestinal tract, maintain intestinal homeostasis, but also regulate balance of harmful and useful bacterial growth. Glycine max Merr (GMM) has been widely used in Asian countries to treat cancer, obesity, oxidative stress and imbalanced immune diseases. In addition, it has been reported that dietary fiber-rich grains promote bowel movements and prevent constipation. In this study, we investigated the viability of LactobacillIus buchneri (L.buchneri) strains, known as lactic acid bacteria under conditions of gastric fluid and intestinal fluid to determine the suitability of L.buchneri as probiotics. The adhesion ability of L.buchneri to caco-2 cells was also confirmed. The present studies showed that GMM extract promoted the growth and activity of L.buchneri strains as prebiotics. Also, this results suggested that the mixture of L.buchneri and GMM extract can helps maintain intestinal health and healthy body as synbiotics and health functional food material.

  • PDF

Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria

  • Hahm, Mi-Seon;Son, Jin-Soo;Hwang, Ye-Ji;Kwon, Duk-Kee;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1790-1797
    • /
    • 2017
  • In the present study, we demonstrate that the growth of salt-stressed pepper plants is improved by inoculation with plant growth-promoting rhizobacteria (PGPR). Three PGPR strains (Microbacterium oleivorans KNUC7074, Brevibacterium iodinum KNUC7183, and Rhizobium massiliae KNUC7586) were isolated from the rhizosphere of pepper plants growing in saline soil, and pepper plants inoculated with these PGPR strains exhibited significantly greater plant height, fresh weight, dry weight, and total chlorophyll content than non-inoculated plants. In addition, salt-stressed pepper plants that were inoculated with B. iodinum KNUC7183 and R. massiliae KNUC7586 possessed significantly different total soluble sugar and proline contents from non-inoculated controls, and the activity of several antioxidant enzymes (ascorbate peroxidase, guaiacol peroxidase, and catalase) was also elevated in PGPR-treated plants under salt stress. Overall, these results suggest that the inoculation of pepper plants with M. oleivorans KNUC7074, B. iodinum KNUC7183, and R. massiliae KNUC7586 can alleviate the harmful effects of salt stress on plant growth.

Characteristics and Distribution of Microorganisms in a Rice Straw Compost for Cultivation of Button Mushrooms (Agaricus bisporus) (양송이 재배에서 볏짚 배지의 발효 단계별 관여 미생물의 분포양상 및 특성)

  • Lee, Chan-Jung;Yoo, Young-Mi;Moon, Ji-Won;Cheong, Jong-Chun;Kong, Won-Sik;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho;Sa, Tong-min
    • The Korean Journal of Mycology
    • /
    • v.45 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • In this study, we analyzed the densities and taxonomic characteristics of various microorganisms that play important roles in Agaricus bisporus culture medium composting, and examined changes in the levels of decomposition-related enzymes secreted by these microorganisms. Various microorganisms such as thermophilic bacteria, actinomycetes, fluorescent Pseudomonas spp., and filamentous bacteria are closely associated with culture medium composts of Agaricus bisporus. The population densities of microorganisms change, and harmful bacteria disappear during thermophilic composting. Psychrobacter sp., Pseudomonas sp., Bacillus sp., and Pseudoxanthomonas sp. accounted for the highest proportion of bacteria in the culture media during outdoor composting, whereas Bacillus sp. and Psychrobacillus sp. were dominant after pasteurization. Cellulose and hemicellulose enzymes of the microorganisms were important at an early stage of rice straw composting and after decomposition of carbon sources, respectively. Microorganisms that secreted these enzymes were present in the second and third turning stage of composting.

Anti-bacterial properties and safety evaluation of disinfectant using Dendropanax morbifera (Hwangchil) extract for passenger cabin in the subway (지하철 객실 적용을 위한 황칠 추출물 소독제의 항균특성 및 안전성 평가)

  • Bui, Vu Khac Hoang;Park, Jae-Seok;Lee, Young-Chul
    • Particle and aerosol research
    • /
    • v.18 no.2
    • /
    • pp.37-50
    • /
    • 2022
  • Due to the syndrome coronavirus 2 (SARS-CoV-2) pandemic, the subway passenger cabin should be continuously sterilized. However, a disinfectant such as chlorine is toxic and can lead to different issues to human health. In this paper, we introduced a novel disinfectant based on natural product (Dendropanax morbifera extract). Via ultra-high performance liquid chromatography - mass spectrometer (UHPLC-MS), different compounds from Dendropanax morbifera extract showed antivirus potentials. Antimicrobial experiments confirmed that the air-disinfectant containing Dendropanax morbifera can eliminate harmful microorganisms including Gram (-), Gram (+), and yeast within 5 mins. The as-prepared air-disinfectant also showed high antivirus activity against H1N1, HRV, and EV71. Deodorization test also indicates that the as-prepared air-disinfectant can lower the harmful gas such as ammonia and trimethylamine in the atmosphere. To evaluate the potential of air-disinfectant containing Dendropanax morbifera in practical applications, different safety tests including acute oral toxicity, acute skin irritation, and eye irritation were conducted. Results showed that the as-prepared disinfectant did not negatively affect tested animals during these safety investigations.

Th17 responses and host defense against microorganisms: an overview

  • Van De Veerdonk, Frank L.;Gresnigt, Mark S.;Kullberg, Bart Jan;Van Der Meer, Jos W.M.;Joosten, Leo A.B.;Netea, Mihai G.
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.776-787
    • /
    • 2009
  • T helper (Th) 17 cells have recently been described as a third subset of T helper cells, and have provided new insights into the mechanisms that are important in the development of autoimmune diseases and the immune responses that are essential for effective antimicrobial host defense. Both protective and harmful effects of Th17 responses during infection have been described. In general, Th17 responses are critical for mucosal and epithelial host defense against extracellular bacteria and fungi. However, recent studies have reported that Th17 responses can also contribute to viral persistence and chronic inflammation associated with parasitic infection. It has become evident that the type of microorganisms and the setting in which they trigger the Th17 response determines the outcome of the delicate balancethat exists between Th17 induced protection and immunopathogenesis.