• Title/Summary/Keyword: Harmful air

Search Result 418, Processing Time 0.023 seconds

A Study of on a Natural Gas Engine Modeling for Mixture formation and Intake Process (혼합기 형성-유입과정을 고려한 천연가스엔진 모델링 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.13-20
    • /
    • 2009
  • Development of a dynamic engine model is essential to predict and analyze of dynamic characteristics from a natural gas engine. Reducing the harmful exhaust emissions can be accomplished by a precise air-fuel ratio control. In this paper, the dynamic engine model was proposed and included mixture formation and intake process because the dynamic characteristics can be affected by the mixture components such as an air and a gaseous fuel. The air mass flow, the partial pressure ratio, and the gas constant are changed by variations of the components in the mixture formation and intake process. The dynamic engine model is applied to the natural gas engine for validation test. Experimental results show that the dynamic engine model is effective to predict the dynamic characteristics of the natural gas engine.

  • PDF

The Role of Air Pollutants in Initiating Liver Disease

  • Kim, Jong Won;Park, Surim;Lim, Chae Woong;Lee, Kyuhong;Kim, Bumseok
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2014
  • Recent episodes of severe air pollution in eastern Asia have been reported in the scientific literature and news media. Therefore, there is growing concern about the systemic effects of air pollution on human health. Along with the other well-known harmful effects of air pollution, recently, several animal models have provided strong evidence that air pollutants can induce liver toxicity and act to accelerate liver inflammation and steatosis. This review briefly describes examples where exposure to air pollutants was involved in liver toxicity, focusing on how particulate matter (PM) or carbon black (CB) may be translocated from lung to liver and what liver diseases are closely associated with these air pollutants.

A Study of Spray Characteristics of Injector on the Air-assisted Pressure Variation (보조 공기 압력 변화에 따른 인젝터의 분무 특성에 관한 연구)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.58-64
    • /
    • 1998
  • In the gasoline engine of fuel injection type, atomization of fuel droplet and its distribution has directly influenced the performance of engine and harmful emission. To investigate atomization characteristics of fuel spray, in this paper fuel spray of air-assisted injector is observed at the various initial conditions of ambient air temperature and air assisted pressure. Behavior of fuel spray is photographed with microscopic visualization system. The SMD of fuel droplet is measured with PMAS (Particle Motion Analysis System). The effect of air-assisted pressure and temperature of ambient air resulted in the decrement of SMD and its variation. Finally, It was found that It was found that from spray angle at the two-hole injector had measured $20{\pm}4$ degree the result of photographs by shadow graphy. The mean diameter of suns decreased and the of droplets increased with increasing the temperature in the spray fields by the results of PMAS measurement. It was found that the characteristics of sprays became finer by increasing the temperature of spray fields about 373K without the delivery of air-assistance.

  • PDF

Effects of Sensor Errors in Air Cleaner Testing on the Cleaner Performance Estimation (공기청정기 시험기의 센서신호 오차가 공기청정기 성능 평가에 미치는 영향)

  • CHUNHWAN LEE;MINYOUNG KIM;SUMIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2023
  • The fuel cell in fuel cell electric vehicle utilizes oxygen in the atmosphere, which requires the use of an air cleaner system to minimize the intake of harmful pollutants. To estimate the performance of the air cleaner system, the pressure drop between the filter inlet and outlet is used under the rated air flow condition. In this study, the effect of sensor error in this air cleaner testing is experimentally carried out. It is found that the errors of the temperature sensor does not significantly affect the estimation of pressure drop. However, in the case of the pressure sensor, 5% sensor error results in the error of pressure drop estimation by 3%. Therefore, it is recommended that the measurement accuracy of the pressure sensor mounted in test system should be maintained at less than 5%.

Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses (연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석)

  • Park, Jong-Seok;Shin, Jong-Wha;Ahn, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.

Reforming Environmentally-Harmful Subsidies in the Energy and Electricity Sectors in Korea (우리나라 에너지·전력 부문 보조금의 환경친화적 개편 효과 분석 : 연산일반균형분석을 중심으로)

  • Kim, Seung-Rae;Kang, Man-Ok
    • Environmental and Resource Economics Review
    • /
    • v.20 no.4
    • /
    • pp.827-858
    • /
    • 2011
  • In Korea, various environmentally harmful subsidies are granted in agriculture, fishery, energy, electricity, transportation, steel and shipbuilding industry. Examples include tax-exempt fuel for agriculture & fishery, VAT- exemption for briquette & anthracite, temporary subsidy for fuel, production stabilizing subsidy for coal mining, subsidy for briquette. Korea's yearly total subsidy in energy area is about 5,291 billion won, among them is 4,870 billion won. To reduce air pollutants and to mitigate climate change, Korea has to review the phase-out of environmentally harmful subsidies and the phase-in of environment-friendly subsidy. The reduction or removal of environmentally harmful subsidies will enhance economic efficiency and bring about environmental benefits. Economic efficiency means less use of inputs, which reduces environmental cost and improves social benefits. This paper applies the Shoven and Whalley's model to the Korean economy and analyzes the general equilibrium incidence effects of reforming environmentally harmful subsidies in the energy and electricity in Korea. We consider several counterfactual scenarios in which current environmentally harmful subsidies are reduced or abolished, compare them with the reference case in the economy, and evaluated the change in efficiency costs and distributional incidence of tax reforms related to subsidies.

  • PDF

A study of decomposition of harmful gases using Composite catalyst by Photocatalytic plasma reactions (복합촉매를 이용한 플라즈마 반응에 의한 유해가스의 제거에 관한 연구)

  • Park, Hwa-Young;Kim, Kwan-Jung;Woo, In-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.121-132
    • /
    • 2013
  • The objective of this study is to maintain the same frequency as the electrode material, concentration, duration of decomposition efficiency, power consumption and voltage measurements using a composite catalyst according to the change of process parameters to obtain the optimum state of the process and the maximum decomposition efficiency. In this paper, known as a major cause of air pollution, such as NO, NO2, SO2, frequency, flow rate, concentration, the material of the electrodes, and using TiO2 catalyst reactor with surface discharge caused by discharging the reactor plasma NOx, SOx decompose the harmful gas want to remove.

A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine (수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구)

  • 채재우;한동성;이상만;전영남;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

A Study on Engine Performance Characteristics with Variation of Operating Condition in Diesel Engine (디젤엔진의 운전인자 변화에 따른 엔진의 성능특성에 관한 연구)

  • Kim, GiBok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.645-651
    • /
    • 2020
  • In this study, It is necessary that we should study on more effective use about reciprocating engines because there are huge increase of air pollution. Diesel Engine is operated by injecting fuel directly to combustion chamber with high pressure. Diesel Engine has greater thermal efficiency and durability than Gasoline Engine. Also, Diesel Engine emitted low harmful exhaust witch caused by Gasoline Engine. There are many ways to improve of performance and decrease of harmful exhaust by controlling injection timing, changing amount of fuel and engine speed and so on. Especially, development and application of common rail direct injection Engine cause the increase of thermal efficiency by controlling a various of operating conditions. In this study we analyze characteristics of performance by changing a various of operating conditions.

Particle collection characteristics of carbon fiber sheet discharge electrode by particle size and application to air cleaner (탄소섬유 시트 방전극의 입자 크기 별 집진 특성 및 공기청정기로의 응용)

  • shin, Dongho;Woo, Chang Gyu;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.81-88
    • /
    • 2018
  • The market for improving the indoor air quality is continuously increasing, and air cleaners are the representative products. As interest in indoor air quality increases, so are the ultrafine particle which are harmful to the human body. Despite its many advantages, electrostatic precipitators are less used in indoor air due to ozone production. In this study, the carbon fiber sheet was applied to the discharge electrode and compared with the conventional tungsten wire discharge electrode. The particle collection efficiency and the amount of ozone generation were measured for 10-100 nm particles. Furthermore, it was applied to commercial air purifier with electrostatic precipitator to compare particle removal performance. The carbon fiber sheet type discharge electrode generates a small amount of ozone, and thus it can be applied to improve indoor air quality.