Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses

연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석

  • Park, Jong-Seok (Research Institute of Industrial Science & Technology) ;
  • Shin, Jong-Wha (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Ahn, Tae-In (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung-Eek (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 박종석 (포항산업과학연구원 광양환경연구본부) ;
  • 신종화 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 안태인 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Received : 2010.11.26
  • Accepted : 2010.12.15
  • Published : 2010.12.31

Abstract

Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.

연소식 $CO_2$ 발생기 사용시 사용하는 연료에 따라서 발생되는 $CO_2$ 농도 및 유해가스 농도를 비교 분석하는 것을 목표로 하였다. 사용 연료로는 등유, LPG, LNG를 이용하였다. 연소식 $CO_2$ 발생기는 등유사용 국내제품을 설치한 온실(A), 외국제품을 설치한 온실(B), LPG 사용 국내제품과 외국제품을 설치한 온실 2개소(C와 D) 및 LNG 사용 온실(E)을 선정하였다. 측정은 서울대학교 농생명과학공동기기원(NICEM)의 실내공기질 분석 시스템의 일부 측정시스템을 온실로 이동하여 측정하였다. 연소식 $CO_2$ 발생기 작동 유무에 따른 $CO_2$ 가스 증감은 $NO_x$류의 증감에 정의 상관을 보였으며, 사용 연식에 따른 버너의 내구성 저하에 따른 유해가스 발생량이 증가하였다. CO 농도가 매우 높게 나올 경우에는 발생기 내부에 컨버터를 장착하여 농도를 저감시켜 직물의 생리장해를 예방시킬 필요가 있었다. 전체적으로 $CO_2$ 발생에 따른 유해가스 농도는 최근 설치된 장치에서는 큰 문제가 없었으며 가장 낮은 유해가스 발생량은 국산 LPG 제품을 사용한 D 온실이었다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Chalabi, Z.S., A. Biro, B.J. Bailey, D.P. Aikman, and K.E. Cockshull. 2002a. SE - structures and environment: optimal control strategies for carbon dioxide enrichment in greenhouse tomato crops. Part 1: Using pure carbon dioxide, Biosystems Engineering 81:421-431. https://doi.org/10.1006/bioe.2001.0039
  2. Chalabi, Z.S., A. Biro, B.J. Bailey, D.P. Aikman, and K.E. Cockshull. 2002b. SE - structures and environment: optimal control strategies for carbon dioxide enrichment in greenhouse tomato crops. Part II: Using the exhaust gases of natural gas fired boilers, Biosysterns Engineering 81:323-332. https://doi.org/10.1006/bioe.2001.0020
  3. Chaua, J., T. Sowlatia, S. Sokhansanjb, F. Pretod, S. Meline, and X. Bib. 2009. Techno-economic analysis of wood biomass boilers for the greenhouse industry Applied Energy 86:364-371. https://doi.org/10.1016/j.apenergy.2008.05.010
  4. Ikeda, H. 2003. Improving the performance and reducing the cost of facilities, In: Greenhouse horticulture handbook ed. 5, ed. by Japan Greenhouse Horticulture Association, Agripress, Tokyo, 56-60 (in Japanese).
  5. Jaffrin, A., N. Bentounes, A. M. Joan, and S. Makhlouf. 2003. Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosystems Engineering 86: 113-123. https://doi.org/10.1016/S1537-5110(03)00110-7
  6. Jo, H.K. 2002. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J. of Environmental Management 64:115-126. https://doi.org/10.1006/jema.2001.0491
  7. Kawamura, A. 2004. Gain and loss evaluation using numerical expression model of the various combustion type $CO_{2}$ application systems in greenhouse, J. SHITA. 16:50-62 (in Japanese).
  8. Kawamara, A., A. Akisawa, and T. Kashiwagi. 2005. Assessment of energy-conserving, environmental load-reducing, and cost-reducing performance of the combustion type thermal storage $CO_{2}$ fertilization system in a greenhouse. J. SHITA. 17:205-212 (in Japanese). https://doi.org/10.2525/shita.17.205
  9. Klimstra, J. 1998. Exhaust Treatment for $CO_{2}$ fertilization with reciprocation gas engines. International Gas Research Conference 391-403.
  10. Nederlandse Gasunie, N.V., M. Bekker, K. Hoving, and J. Klimstra. 1999. Increase in crop yields in greenhouse due to the combined heat and power using natural gas. New energy and industrial technology development organization (NEDO) abroad reports no. 816; http://www.nedo.go.jp/kankobutsu/report/816/caddet-816.html.
  11. Shimaji, H. 2003. Complex control of the environment and energy conservation technology. In: Greenhouse horticulture handbook ed. 5, ed. by Japan Greenhouse Horticulture Association, Agripress, Tokyo, 206-216 (in Japanese).
  12. Son, J.E., J.S. Park, and H.Y. Park. 1999. Analysis of carbon dioxide changes in urban-type plant factory system. J. Kor. Soc. Hort. Sci. 40:205-208.
  13. Son, J.E. and J.S. Park. 2001. $NO_{2}$ absorption and physiological response of lettuce in a semi-closed plant production system. Journal of Bio-Environmental Control 10:207-212.