• Title/Summary/Keyword: Hardware architecture

Search Result 1,331, Processing Time 0.023 seconds

A hardware implementation of neural network with modified HANNIBAL architecture (수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현)

  • 이범엽;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF

Hardware architecture of a wavelet based multiple line addressing driving system for passive matrix displays

  • Lam, San;Smet, Herbert De
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.802-805
    • /
    • 2007
  • A hardware architecture is presented of a wavelet based multiple line addressing driving scheme for passive matrix displays using the FPGA (Field Programmable Gate Arrays), which will be integrated in the scalable video coding $architecture^{[1]}$. The incoming compressed video data stream will then directly be transformed to the required column voltages by the hardware architecture without the need of employing the video decompression.

  • PDF

A study on Hardware Redundancy Architecture of Fault-Tolerant System (결함허용 시스템의 하드웨어 여분구조에 대한 연구)

  • shin Ducko;Lee Jong-woo;Lee Jae-ho;Lee Key-seo
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.450-455
    • /
    • 2003
  • This paper is to discuss the hardware redundancy architecture of fault-tolerance system with using redundancy. Each architecture will be studied to implement fault-tolerance in classifying hardware redundancy architecture as passive, active and hybrid hardware redundancy. Therefore Fault-Masking and Fault-Detecting Techniques in each redundancy architecture is studied.

  • PDF

An Efficient Hardware Architecture of Coordinate Transformation for Panorama Unrolling of Catadioptric Omnidirectional Images

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • In this paper, we present an efficient hardware architecture of unrolling image mapper of catadioptric omnidirectional imaging systems. The catadioptric omnidirectional imaging systems generate images of 360 degrees of view and need to be transformed into panorama images in rectangular coordinate. In most application, it has to perform the panorama unrolling in real-time and at low-cost, especially for high-resolution images. The proposed hardware architecture adopts a software/hardware cooperative structure and employs several optimization schemes using look-up-table(LUT) of coordinate conversion. To avoid the on-line division operation caused by the coordinate transformation algorithm, the proposed architecture has the LUT which has pre-computed division factors. And then, the amount of memory used by the LUT is reduced to 1/4 by using symmetrical characteristic compared with the conventional architecture. Experimental results show that the proposed hardware architecture achieves an effective real-time performance and lower implementation cost, and it can be applied to other kinds of catadioptric omnidirectional imaging systems.

Hardware Design of a Two-Stage Fast blck Matching Algorithm Using Integral Projections (거상투영을 이용한 2단계 고속 블록정합 알고리즘의 하드웨어 설계)

  • 판성범;채승수;김준식;박래홍;조위덕;임신일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.129-140
    • /
    • 1994
  • In this paper we investigate the hardware implementation of block matching algorithms (BMAs) for moving sequences. Using systolic arrays we propose a hardware architecture of a two-stage BMA using integral projections which reduces greatly computational complexity with its performance comparable to that of the full search (FS). Proposed hardware architecture is faster than hardware architecture of the FS by 2~15 times. For realization of the FS and two stage BMA modeling and simulation results using SPW and VHDL are also shown.

  • PDF

Design of Reconfigurable Hardware for FIR Filters (재구성 가능한 FIR 필터 하드웨어 구조 설계)

  • Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.309-311
    • /
    • 2005
  • In general, for specific applications, customized hardware showed better performance than general processor in terms of processing time and power consumption. However, customized hardware systems have lacks of flexibility in nature and it leads the difficulties for debugging and architecture level revision for performance enhancement. To solve this problem, reconfigurable hardware is developed. Proposed reconfigurable hardware architecture for FIR filter system can easily change the architecture of filter blocks including filter tap size and their signal path. Proposed FIR filter architecture was implemented on FPGA using several MUXs and registers and it showed the reconfigurablility and reusability in several examples.

  • PDF

Parallel 2D-DWT Hardware Architecture for Image Compression Using the Lifting Scheme (이미지 압축을 위한 Lifting Scheme을 이용한 병렬 2D-DWT 하드웨어 구조)

  • Kim, Jong-Woog;Chong, Jong-Wha
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.80-86
    • /
    • 2002
  • This paper presents a fast hardware architecture to implement a 2-D DWT(Discrete Wavelet Transform) computed by lifting scheme framework. The conventional 2-D DWT hardware architecture has problem in internal memory, hardware resource, and latency. The proposed architecture was based on the 4-way partitioned data set. This architecture is configured with a pipelining parallel architecture for 4-way partitioning method. Due to the use of this architecture, total latency was improved by 50%, and memory size was reduced by using lifting scheme.

  • PDF

A Study on Hardware Implementation of a VSB Equalization System (VSB 등화시스템의 하드웨어 구현방법에 관한 연구)

  • 채승수;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1314-1325
    • /
    • 1995
  • In this paper, we describe hardware implementation of VSB (Vestigial SideBand) mo-dulation equalization systems for HDTV (High Definition TeleVision). By modifying an adaptive equalization algorithm, we propose a hardware architecture with a low hardware cost and the performance close to floating-point operations. We also employ the pipeline concept to reduce the hardware cost. The effectiveness of the proposed hardware architecture is de- monstrated through computer simulation and the optimization result of VHDL circuit descriptions.

  • PDF

High Performance Integer Multiplier on FPGA with Radix-4 Number Theoretic Transform

  • Chang, Boon-Chiao;Lee, Wai-Kong;Goi, Bok-Min;Hwang, Seong Oun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2816-2830
    • /
    • 2022
  • Number Theoretic Transform (NTT) is a method to design efficient multiplier for large integer multiplication, which is widely used in cryptography and scientific computation. On top of that, it has also received wide attention from the research community to design efficient hardware architecture for large size RSA, fully homomorphic encryption, and lattice-based cryptography. Existing NTT hardware architecture reported in the literature are mainly designed based on radix-2 NTT, due to its small area consumption. However, NTT with larger radix (e.g., radix-4) may achieve faster speed performance in the expense of larger hardware resources. In this paper, we present the performance evaluation on NTT architecture in terms of hardware resource consumption and the latency, based on the proposed radix-2 and radix-4 technique. Our experimental results show that the 16-point radix-4 architecture is 2× faster than radix-2 architecture in expense of approximately 4× additional hardware. The proposed architecture can be extended to support the large integer multiplication in cryptography applications (e.g., RSA). The experimental results show that the proposed 3072-bit multiplier outperformed the best 3k-multiplier from Chen et al. [16] by 3.06%, but it also costs about 40% more LUTs and 77.8% more DSPs resources.

VLSI Architecture for Computer-Generated Hologram (컴퓨터 생성 홀로그램을 위한 VLSI 구조)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7C
    • /
    • pp.540-547
    • /
    • 2008
  • In this paper, we proposed a new VLSI architecture which can generate computer-generated hologram (CGH) in real-time and implemented to hardware. The modified algorithm for high-performance CGH was introduced and re-analyzed (or designing hardware. from both numerical and visual analysis, the infernal number system of hardware was decided. CGH algorithm and precision analysis enabled to propose a new cell architecture for CGH. The operational sequence was analyzed with the architecture of CGH cell and the characteristics of the modified CGH algorithm, and finally the pipelined architecture and the operational timing were proposed.