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Abstract 

 
Number Theoretic Transform (NTT) is a method to design efficient multiplier for large integer 
multiplication, which is widely used in cryptography and scientific computation. On top of 
that, it has also received wide attention from the research community to design efficient 
hardware architecture for large size RSA, fully homomorphic encryption, and lattice-based 
cryptography. Existing NTT hardware architecture reported in the literature are mainly 
designed based on radix-2 NTT, due to its small area consumption. However, NTT with larger 
radix (e.g., radix-4) may achieve faster speed performance in the expense of larger hardware 
resources. In this paper, we present the performance evaluation on NTT architecture in terms 
of hardware resource consumption and the latency, based on the proposed radix-2 and radix-
4 technique. Our experimental results show that the 16-point radix-4 architecture is 2× faster 
than radix-2 architecture in expense of approximately 4× additional hardware. The proposed 
architecture can be extended to support the large integer multiplication in cryptography 
applications (e.g., RSA). The experimental results show that the proposed 3072-bit multiplier 
outperformed the best 3k-multiplier from Chen et al. [16] by 3.06%, but it also costs about 40% 
more LUTs and 77.8% more DSPs resources. 
 
 
Keywords: Cryptography, FPGA, Number Theoretic Transform, Homomorphic 
Encryption and Lattice based Cryptosystem. 
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1. Introduction 

Large integer multiplication is required for many applications, including scientific 
computation [1] and cryptography [2-4]. However, standard schoolbook multiplication 
algorithm is difficult to scale when the size of integer grows. The computational complexity 
of schoolbook multiplication is O(n2), where n refers to the length of input data, indicating that 
this is a quadratic relationship. A widely used algorithm to reduce the complexity of 
multiplication is Schonhage-Strassen Multiplication Algorithm (SSMA) [5]. This algorithm is 
able to improve the complexity from O(n2) to O(n log n (log log (n))) by performing the 
multiplication in the frequency domain, which is also known as convolution. The speedup 
gained by SSMA is due to the fast algorithm to convert between time and frequency domain. 
Discrete Fourier Transform (DFT) is a popular technique to transform the data from time 
domain to its frequency domain, or vice versa. DFT operates on complex domain, while 
Number Theoretic Transform (NTT) operates over a finite field GF(p). The modulus p needs 
to be specifically chosen to allow NTT to operate correctly. Since DFT is using floating point 
arithmetic to compute the complex numbers, it is not suitable to be used in cryptography. This 
is because floating point arithmetic contains round-off errors, and the error analysis is difficult 
to handle correctly. Hence, NTT is more widely used in cryptography since it only involves 
integer arithmetic.  
 
 

Algorithm 1 Pseudocode for SSMA 

Input: xi and yi, the coefficients of the multiplier and multiplicand. 
 
Output: zi, the coefficients of the multiplication product, 
 
zi = xi X yi 

 
X  NTT(x), Y  NTT(y) 
for i from 0 to N – 1 do 
      Z[i]  X[i] * Y[i] 
end for 
z  inverseNTT(Z) 
z  Evaluation(z) 
Return z 

 
 
Algorithm 1 shows the standard SSMA which involves three NTTs steps. It first performs two 
forward transforms on X and Y (the multiplication operands), followed by the point-wise 
multiplication and one inverse transform on the result of product (Z). The implementation of 
NTT in hardware usually employs radix-2 architecture due to the small area consumption, but 
radix-4 have potential to achieve faster speed performance. In this paper, we performed 
evaluation for radix-2 and radix-4 are NTT in terms of its speed performance and hardware 
area consumption. Our experimental results show that radix-4 can achieve faster performance 
in expense of additional hardware area. 
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2. Number Theoretic Transform and Fast Fourier Transform 

2.1 NTT and FFT 

Fast Fourier Transform (FFT) is a much more efficient way to calculate Discrete Fourier 
Transform (DFT), effectively reducing the O(n2) complexity to O(n log n). Cooley-Tukey FFT 
(CTFFT) [6] is used in this paper as it is more suitable for parallel implementation in FPGA. 
Note that the CTFFT can also be applied to speedup NTT. In the subsequent discussions, we 
denote our implementation in integer domain as CTFNT (Cooley Tukey Fast Number 
Theoretic Transform) to differentiate it from CTFFT (complex domain). CTFNT allows a 
large integer or polynomial to be computed with multiple FNTs with smaller sizes. The data 
is organized in two-dimensional form, which is a property that can be exploited to improve the 
parallelism. The steps to perform CTFNT are presented below: 

1. N-point FNT is decomposed into 2D, N1 × N2. 

2. Column FNT (Perform N1 times of N2-point FNT). 

3. Twiddle factors multiplication. 

4. Row FNT (Perform N2 times of N1-point FNT). 
 

2.2 Radix-2 vs Radix-4 NTT 

Radix-2 FNT is most commonly used in designing hardware architecture, among other FNT 
variants, due to its low area consumption and simplicity. Algorithm 2 shows the steps in 
performing an in-place radix-2 FNT using the Cooley-Tukey technique. Note that the in-place 
implementation stores the results of NTT onto the input memory. This effectively eliminates 
the need to have a separate memory for storing the output data, which is useful in embedded 
systems that are constrained in memory. 

 

Algorithm 2 In-place radix-2 CTFNT 

Input: Polynomial a in the time domain; pre-computed twiddle factors (ω)  
 
Output: Polynomial A in the frequency (NTT) domain 
 
for NP=n/2; NP>0 NP=NP/2 do 
      a[i]  a[i] × Y[i] 
       jf 0; j0; jTwi0;                                 // Initialize the indices. 
        for jf=0; jf<n; jf=j+NP do 
              for j=jf; j<jf+NP; j=j+1 do 
                      temp  (ω[jTwi] × a[j+NP]) mod p; 
                      a[j+NP]  (a[j]-temp) mod p;           // Butterfly operations 
                      a[j]  (a[j]+temp) mod p; 
             end for 
            jTwi ++; 
       end for 
end for 
Return z 
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A radix-R FNT factorizes an N-point NTT into NR-point NTTs following logRN levels of 
decomposition. Consider that the index of the first level is 1, the index of the top-level NTT 
(before any decomposition) is equals to 0. At each level of decomposition, the index is 
increased of 1, and the number of NTTs at each level R.. Each NTT now contains N/Rl number 
of points. To implement radix-R FNT for a N-point NTT, the length N must be a power of R. 
There is a way to avoid this limitation when N is not a power of R, which is widely known as 
“mixed-radix FNT”. This technique uses different radices of FNT at different level. However, 
such technique is very complicated to implement in hardware, and it often consumes a larger 
hardware area since it has to accommodates separate computational modules for different 
radices. Radix-R FNT is essentially a technique that employs the divide-and-conquer paradigm 
by dividing the original N-point FNT into R number of FNTs. This process is repeated until 
each of the FNTs have only R data. 

To compute N-point FNT, a radix-R FNT module competes R amount of data at a time. This 
means that a radix-4 FNT module can process more data at each level compared to radix-2 
FNT. In contrast, a radix-2 FNT module has shorter latency compared to radix-4 module, but 
it requires more modules to compute the same amount of work. For instance, we need four 
radix-2 FNT modules to compute a 4-point NTT, but only one radix-4 FNT module to do the 
same computation. The number of radix-R FNT modules, NR needed to compute N-point FNT 
is NR = (N/R) × logRN, where logRN is the number of FNT level and (N/R) is the number of 
radix-R FNT module needed at each level. 

Implementing N-point FNT module with fully NR number of radix-R modules is too costly for 
resource constrained FPGA. To overcome this issue, the number of radix-R modules 
implemented in hardware is usually less than NR; they are being reused at different level of 
FNT to reduce the hardware resource consumption. At each level of FNT, the input data are 
loaded from the memory for computation; the intermediate results are then written back to the 
memory. This process repeats until the whole FNT process is completed. Hence, the number 
of FNT level is a crucial for speed performance, as it determines the number of memory 
read/write operations required, thus affecting the memory latency of FNT process. 

 
Table 1. NR needed for radix-2 and radix-4 FFT for N-point FFT 

 
N Radix-2 Radix-4 

2 1 - 
4 4 1 
8 12 - 
16 32 8 
32 80 - 
64 192 48 

128 448 - 
256 1024 256 

 
 
Although a single radix-4 FNT module has longer latency compared to radix-2 FNT module, 
it is advantageous due to the lesser FNT level, eventually reduced the memory latency of the 
whole FNT process. The number of levels required to complete an N-point FNT (NS) is equals 
to logRN. This implies that FNT with higher radix (R) has smaller number of FNT level (NS). 
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Radix-4 FFT has lesser stages compared to radix-2 FNT, while radix-8 FNT has lesser stages 
than radix-4 FNT. However, the improvement gained by reducing NS (increase R) is 
diminishing when R gets larger. Fig. 2 shows the number of levels (NS) for different sizes in 
N, with R = 2, 4, 8, 16. 
 

 
 

Fig. 1. Illustration of radix-2 and radix-4 FNT. 
 

Fig. 1a) shows the construction of a radix-2 FNT module. Fig. 1b) illustrates how four radix-
2 FNT modules can be used to form a 4-point FNT, wherein four input data are processed two-
by-two and stored into a set of intermediate data (m0; m1; m2; m3), before proceeding to the 
second level of radix-2 FNT. On the other hand, radix-4 module (Fig. 1c)) allows four input 
data to be processed at once within one level. Table 1 shows the number of radix-2 and radix-
4 modules needed for N-point FNT, where N is in power of 2 and range from 2 to 256. Note 
that for a fully radix-R FNT to be computed, N must be a power of R; this explains that for 
cases where N = 2; 8; 32; 128, radix-4 FNT cannot be used. This is the drawback for high radix 
FNT where R > 2.  

Implementing N-point FNT module with fully NR number of radix-R modules is too costly for 
resource constrained FPGA. To overcome this issue, the number of radix-R modules 
implemented in hardware is usually less than NR; they are being reused at different level of 
FNT to reduce the hardware resource consumption. At each level of FNT, the input data are 
loaded from the memory for computation; the intermediate results are then written back to the 
memory. This process repeats until the whole FNT process is completed. Hence, the number 
of FNT level is a crucial for speed performance, as it determines the number of memory 
read/write operations required, thus affecting the memory latency of FNT process.  

Although a single radix-4 FNT module has longer latency compared to a single radix-2 FNT 
module, it is advantageous due to the lesser FNT level, eventually reduced the memory latency 
of the whole FNT process. The number of levels required to complete an N-point FNT (NS) is 
equals to logRN. This implies that FNT with higher radix (R) has smaller number of FNT level 
(NS). Radix-4 FFT has lesser stages compared to radix-2 FNT, while radix-8 FNT has lesser 
stages than radix-4 FNT. However, the improvement gained by reducing NS (increase R) is 
diminishing when R gets larger. Fig. 2 shows the number of levels (NS) for different sizes in 
N, with R = 2, 4, 8, 16. 
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Fig. 2. Number of stages, NS against Number of points, N. 

 

2.3 Related Work 
SSMA is widely used to speed-up the computation of large integer multiplication and 
polynomial multiplication in cryptography. It is mainly employed by fully homomorphic 
encryption and public key cryptography, since these algorithms involve a lot of heavy 
computation in the integer or polynomial domain. For instance, elliptic curve cryptography 
(ECC) needs to compute a lot of point multiplication that involve modular reduction on integer 
larger than 128-bit. To ensure sufficient security, RSA also needs to perform modular 
exponentiations on a very large integer (greater than 2048-bit).  
 
Recently, the introduction of practical quantum computer created serious concern among the 
research community. The Shor’s algorithm [7] executed on quantum computers can easily 
break the existing ECC and RSA schemes. This has a catastrophic consequence because ECC 
and RSA schemes are very widely used in the industry in the past decades, and they are still 
being used now. This stimulated the development of many new public key cryptographic 
algorithms to resist the potential threat from quantum computers. To avoid such problems, the 
United States’s National Institute of Standards and Technology (NIST) had called upon a 
worldwide competition to select a few suitable post-quantum cryptography (PQC) schemes 
[8]. This competition started in 2017 and currently in its third round, wherein 15 candidates 
are selected for final evaluation. Among these finalists, many schemes like Kyber (key-
encapsulation mechanism, KEM) [9] and Dilithium (digital signature) [10] are developed 
based on the lattice problem, which is known to be NP hard. Lattice-based problems are also 
widely used to develop advanced cryptographic protocols [11]. These lattice-based schemes 
are computationally expensive due to the extensive use of polynomial multiplications.  
 
One way to improve the efficiency of computing polynomial multiplication is to offload it to 
hardware module. Roy and Basso [12] show that with careful design, a schoolbook polynomial 
multiplication technique can achieve very fast speed on FPGA hardware. This hardware 
module can be implemented as instruction sets to speed up the computation in embedded 
system. On the other hand, one can also use asymptotically fast algorithm like SSMA to speed-
up the polynomial multiplication. One notable example was demonstrated by Bisheh-Niasar 
et al. [13] through the use of NTT, implemented efficiently on FPGA hardware.  
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Besides public key cryptography and PQC, fully homomorphic encryption schemes also 
perform computations on large integer and polynomial. For instance, Cao et al. [3] 
demonstrated a hardware architecture suitable for performing fully homomorphic encryption, 
which relies on the efficient radix-2 NTT architecture and a low-hamming weight technique 
to provide low latency implementation. Other low-complexity [2] and area-efficient 
architecture [14] were also proposed to speed-up the implementation of polynomial 
multiplication on hardware. Note that these hardware architectures only explore radix-2 NTT 
due to its low hardware area consumption. In this paper, we proposed to explore other radices 
to improve the speed performance of NTT.  
 
GPU and FPGA are the two representative accelerators used by many cloud services providers 
like AWS and IBM. Due to this reason, there are also implementations of NTT on GPU to 
speed up the cryptography algorithms. For instance, Gupta et al. [20] presented the 
implementation of radix-2 NTT optimized for the Kyber KEM. On the other hand, Jiminez et 
al. [21] presented the secure implementation of RSA relying on the residue number system. 
Note that GPU implementation is essential hardware techniques, which are very hard to 
generalize to FPGA hardware architecture.  
 

3. Evaluation of Radix-2 and Radix-4 NTT Architecture 

3.1 Parameter Set 
The sub-section title should be written in 11-point size using Arial font style, block color, and 
The modulus chosen for our NTT is 0xFFFFFFFF00000001, which is a 64-bit Solinas prime 
that serves several useful properties [15]. Firstly, given a 128-bit number in its polynomial 
form: P128−bit(X) = aX96 + bX64 + cX32 + d, where a, b, c and d are the coefficients. The modular 
operation (over P) of this 128-bit number is equivalent to (232)(b + c)a − b + d. This property 
is allowing us to handle overflow that potentially occurs when multiplying two 64-bit data. 
Note that the coefficients of the 128-bit number are derived from the Karatsuba multiplication 
algorithm. 
 
Secondly, the root of unity, g for 4-point and 16-point are g4 = 0x1000000000000 and g16 = 
0x1000 respectively. Since both g are of power-of-two, the expensive twiddle factors 
multiplication can be replaced with simple left shifting. Each NTT point is of 24-bit size and 
half of the NTT points are reserved for the multiplication product.  

3.2 16-point FNT Designs 
Three different FNT modules are implemented to compute 16-point FNT for performance 
evaluation. The first design uses radix-2 FNT module, while second design employs a generic 
radix-4 FNT module. The third design is our proposed solution (we refer it as radix-4 CTFNT 
module in the subsequent discussions).  
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Fig. 3. Block diagram: radix-2 FNT module. 

 

 
Fig. 4. Block diagram: radix-4 FNT module 

 

 
Fig. 5. Block diagram: radix-4 CTFNT module 

 
Fig. 3 shows the block diagram of a radix-2 FNT module, which is commonly used in FNT 
hardware design [16]. Fig. 4 shows the generic radix-4 FNT module that can be constructed 
by combining four radix-2 FNT modules in 2-by-2 manner. The block diagram of our proposed 
radix-4 CTFNT module with Cooley-Tukey decomposition is illustrated in Fig. 5. Realizing 
the fact that there are only two constant twiddle factors to be used in radix-4 CTFNT, and the 
multiplication of these two twiddle factors can be done by modular left shift, we presented an 
improved design in Fig. 6. The improved design effectively reduces the hardware resources, 
removing the need of various twiddle factor inputs and does not need an extra signal to choose 
between left shifting for forward/inverse transform. 

3.3 Performance Evaluation 
The proposed 16-point radix-4 CTFNT architecture is implemented in Xilinx Artix-7 
(xc7a100tcsg324-1) FPGA. The result is then compared with radix-2 FNT and radix-4 FNT 
implementation in the same FPGA. Table 2 shows the resources required to construct 16-point 
FNT with different hardware architectures (radix-2 FNT, radix-4 FNT and radix-4 CTFNT) 
and their respective speed performance. The results show that our proposed radix-4 CTFNT 
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module is able to achieve 2× speedup but consumes 4× more resources. Compared to the 
generic radix-4 FNT module, the radix-4 CTFNT consumes lesser resources and is 10% faster. 
From this evaluation, we can conclude that radix-4 CTFNT can achieve faster speed 
performance in expense of more hardware resources. This 16-point NTT architecture can be 
used to handle integer multiplication with 192-bit operands. In future, this can be extended to 
256-point FNT using the proposed radix-4 CTFNT to construct a full 3072-bit SSMA 
multiplier, which can be useful for cryptography (e.g., RSA [16]). 
 

 
Fig. 6. Block diagram: radix-4 CTFNT module (improved) 

 
Table 2. Resources utilization and timing performance of 16-point FNT with Radix-R FFT module 

 
  

Hardware 
Design 

Resources Timing 
Look-up 

Table 
(LUT) 

Flip-
Flop 
(FF) 

LUTR
AM 

BRA
M 

DS
P 

clock 
cycle 

period 
(ns) 

latency 
(ns) 

 
16-point 

FNT 

Radix-2 FNT 1687 456 3 4 12 36 50 1800 
Radix-4 FNT 6662 2063 68 7 48 20 50 1000 

Radix-4 CT FNT 6421 1805 35 8 45 18 50 900 
 

4. Complete 3072-bit SSMA Multiplier 
In this section, we present the design of a 256-point FNT and the construction of a 3072-bit 
SSMA multiplier. Each NTT point handles 24-bit integer and only half of the NTT points 
contain the actual data; the other half are padded with zero [3]. Hence, the maximum supported 
operand size for this implementation is equal to 24 × 256=2 = 3072-bit. The 256-point FNT is 
first decomposed into sixteen 16-point × 16-point FNTs; each of the 16-point FNT is then 
further decomposed into four 4-point FNTs. Since these two levels of CTFNT decomposition 
are done with symmetrical decomposition (N1 = N2), the precomputed twiddle factors can be 
shared by both column and row FNTs, reducing the memory costs by half. 
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4.1 Proposed Partially Pipelined 3K-multiplier 
 

 
Fig. 7. Block diagram of the partially pipelined 3K-multiplier. 

 
Fig. 7 shows the block diagram of our first 3k-multiplier design using two radix-4 CTFNT 
modules to perform the column and row NTT operations. The functionalities for each part of 
the 3k-multiplier are briefly described below:  
 

1) Part (a): Block RAM module; this hosts the memory units to hold the input data 
(original, intermediate, and final data). 

2) Part (b): radix-4 FNT module, perform FNT computation with four inputs and produce 
four FNT outputs. 

3) Part (c): Multiplier module, perform multiplication with twiddle factors. 
4) Part (d): Temporary registers (to store the intermediate data of FNT) and the 

convolution unit. 
5) Part (e): radix-4 FNT module, perform FNT computation with four inputs and produce 

four FNT outputs. 
6) Part (f): Multiplier module, perform multiplication with twiddle factors. 

 
Part (a), (b) and (c) are the modules used to compute the column-NTT. It processes four points 
at a time and store the intermediate results onto part (d) (the temporary registers). All the 
column-NTT must complete before proceeding to the row-NTT. The row-NTT are handled by 
part (e), (f) and (a). Note that the BRAM in part (a) is used to store the input and intermediate 
data during the FNT computation. The final results are also stored in the BRAM.  In this design, 
the column-NTT read data from the block RAM and write to the temporary registers. 
Conversely, we can see that the row-NTT read data from the temporary registers and write 
back to the block RAM. Part (d) also computes the convolution of the SSM, which reads and 
writes data that are stored in the block RAM. The convolution module does not need any 
intermediate memory. However, an efficient hardware architecture should ensure that the data 
flow is always fully pipelined. In this design, there are dependencies between different parts, 
causing it to be a partially pipeline design, which is not efficient. In particular, part (e), (f) and 
(a) (row-NTT) must be in idle state while waiting for blocks (a), (b) and (c) (column-NTT) to 
complete their computation. Likewise, block (a), (b) and (c) must be stalled when block (e), 
(f) and (a) are running. This drastically reduces the hardware occupancy and efficiency, which 
motivates us to design a fully pipelined architecture. 

4.2 Proposed Fully Pipelined 3K-multiplier 
Fig. 8 shows the proposed fully pipelined design improved from the partially pipelined version 
presented in Section 4.1. In this fully pipelined design, instead of waiting for one 16-point 
column FNT to complete before the 16-point row FNT, four radix-4 CTFNT modules are 
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instantiated and arranged in parallel. This allows the proposed architecture to compute either 
four 4-point column or 4-point row FNTs, and then store back to the memory before the next 
FNT. In other words, there will be always sufficient data to feed the pipeline in our architecture, 
eventually achieving a more efficient design compared to the partially pipelined version. To 
achieve this efficient design, there are extra pipeline registers added to the output of the 
multipliers. This is designed in this way to avoid the possible collision of data (race condition) 
when two or more modules are accessing the same BRAM. For instance, if four data from the 
multipliers tries to write onto the BRAM0, then the second data is delayed by one clock cycle. 
The remaining third and fourth data are then delayed by two and three clock cycles respectively. 
The overall process takes 198 clock cycles, while the delay introduced three additional clock 
cycles to completely fill the pipeline. This overhead is insignificant as it is only around 1.5% 
of the overall process, but it allows full throughput efficiency to be achieved. 
 

 
Fig. 8. Block diagram of the fully pipelined 3K-multiplier. 

 

4.3 Experimental Results 
Table 3. Resources and Performance Comparison with [16]. 

Architecture 
Design 

FPGA 
Hardware 

Bit-size 
(bit) 

Resources Timing 
Look-up 

Table 
(LUT) 

BRAM   DSP Clock 
Cycles 

Period 
(ns) 

Latency 
(ns) 

Our Work Artix-7 3072 20129 16:1 192 198 50 9900 
Virtex-6 3072 30489 48:0 192 198 33 6534 

Chen et al. 
[16] 

Virtex-6 3100 21672 33:11 108 843 8 6740 
Virtex-6 3132 12147 22:0 27 1701 6.09 10360 
Virtex-6 3196 11728 22:0 27 3693 6.19 22860 
Virtex-6 3196 5835 11:0 9 3633 5.09 18490 
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The performance of proposed 3072-bit SSMA multiplier is shown in Table 3. Our 
implementation requires only 6.534µs and 9.900µs to complete the multiplication when it is 
executed in Virtex-6 (xc6vlx130t-1) and Artix-7 (xc7a100tcsg324-1) respectively. Compared 
with Virtex-6, the implementation on Artix-7 utilized about 2/3 lesser resources and run at 
slower clock frequency, resulting in a higher latency. This is because the Artix family FPGA 
is designed for low power instead of high performance, compared to Virtex-6 family. Hence, 
applications that requires high multiplication performance can implement the proposed 3072-
bit SSMA multiplier into a high-end FPGA like Virtex-6. For other applications that puts 
priority on area consumption and energy efficiency, the proposed 3072-bit SSMA multiplier 
can be implemented in low end FPGA like Artix-7. 

4.4 Discussions and Future Work 
Our work can outperform the best 3k-multiplier from Chen et al. [16] by 3.06%, but it also 
costs about 40% more LUTs and 77.8% more DSPs resources. This is due to the parameters 
set used in their implementation is different from our work. In our implementation, we focus 
on 3k-multiplier implemented with fixed 64-bit Solinas prime and 64-bit data processing. On 
the other hand, Chen et al. [17] introduced multiplier with comprehensive range (covering 1k-
bit to 15k-bit). These multiplier employs Pseudo-Fermat number as modulo for NTT, where 
the modulo ranges from 65-bit to 273-bit. Using a modulo with larger bit size allowed the 
multiplication operands to be broken down into lesser number of elements of larger size each. 
Hence, the NTT with lesser number of transformation points can be used to reduce the number 
of internal operations, including addition, subtraction, and multiplication between two points. 
Take their best timing performance 3k-multiplier as example, a 225-bit 
modulo allowed the 3k-multiplier to be implemented with only 64-point NTT at 97-bit each. 
Compared to our 3k-multiplier, we use 64-bit modulo and requires 256-point NTT with 24-bit 
each. This explains why our current design cannot gain further speed performance against the 
results from Chen et al. [17]. 
 
On the other hand, it is believed that lesser number of NTT points with greater bit size for each 
of the point, is better than having more points with lesser bit size each. This is because NTT 
module with lesser points can be computed faster. However, point-wise mathematical 
operations of larger bit size require more time to compute. For instance, addition of two 24-
bit numbers can be done faster than addition of two 97-bit numbers. Hence, we consider 
exploring the possibilities of using NTT modulo of larger bit size, with Solinas prime and other 
suitable numbers. We believe that there are still room for improvement for the proposed radix-
4 CTFNT architecture, after considering these factors. 

5. Conclusion 
In this paper, we show that the proposed radix-4 CTFNT architecture outperforms the radix-2 
and generic radix-4 NTT architecture for 16-point FNT computation. We also presented the 
design of a 3072-bit multiplier based on the proposed radix-4 CTFNT architecture to show its 
practicality in cryptography applications. In future, we plan to develop an efficient 
exponentiation hardware architecture based on the developed multiplier, to support a full RSA 
computation in FPGA. To achieve a better energy efficiency, we also aim to develop a 
reconfigurable version of this multiplier in future to suit different multiplicands sizes and 
performance constraints in Internet of Things (IoT) applications.  
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