• 제목/요약/키워드: Halpin-Tsai

검색결과 92건 처리시간 0.026초

변형 Halpin-Tsai식에 의한 PHB/PEN/PET 섬유의 탄성률 예측 (Determination of Tensile Modulus of PHB/PEN/PET Fiber Using Modified Halpin-Tsai Equation)

  • 정봉재;김성훈;이승구;전한용
    • 폴리머
    • /
    • 제24권6호
    • /
    • pp.810-819
    • /
    • 2000
  • Poly(p-hydroxybenzoate) (PHB)/poly(ethylene terephthalate) (PET) 8/2 공중합 폴리에스터 액정고분자와 poly(ethylene 2,6-naphthalate) (PEN), PET를 용융방사하여 인장탄성률을 측정하고, 55$^{\circ}C$ ο-chlorophenol 에서 2시간 동안 모재인 PEN/PET부분을 용출시킨 후, 용출되지 않은 PHB 피브릴을 전자현미경으로 조사하였다. 모재고분자 속에 존재하는 피브릴이 단섬유일 때 적용하는 Halpin-Tsai식과 피브릴이 연속상일 경우 적용하는 혼합의 법칙을 사용하여 이론적인 탄성률을 계산하고, 측정된 탄성률과 비교하였다. 이론적 탄성률과 측정된 탄성률의 차이를 보정하기 위하여 무차원 점도비 상수 (K)를 정의하고, K를 적용하여 기존의 식을 변형하였다. 변형된 Halpin-Tsai식과 혼합의 법칙을 통해 계산된 이론적인 탄성률은 용융방사를 통해 제조된 복합재료의 탄성률 계산에 더 적합함을 확인하였다.

  • PDF

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.657-668
    • /
    • 2017
  • In the most of previous studies, researchers have restricted their own studies to consider the effect of single walled carbon nanotubes as a reinforcement on the vibrational behavior of structures. In the present work, free vibration characteristics of functionally graded annular plates reinforced by multi-walled carbon nanotubes resting on Pasternak foundation are presented. The response of the elastic medium is formulated by the Winkler/Pasternak model. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of the multi-walled carbon nanotube/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the multi-walled carbon nanotubes wt% range considered. The 2-D generalized differential quadrature method as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the plates are investigated. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of annular plates.

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Semi-analytical solutions of free and force vibration behaviors of GRC-FG cylindrical shells

  • Lei, Zuxiang;Tong, Lihong
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.687-699
    • /
    • 2019
  • In this paper, free and force vibration behaviors of graphene-reinforced composite functionally graded (GRC-FG) cylindrical shells in thermal environments are investigated based on Reddy's third-order shear deformation theory (HSDT). The GRC-FG cylindrical shells are composed of piece-wise pattern graphene-reinforced layers which have different volume fraction. Based on the extended Halpin-Tsai micromechanical model, the effective material properties of the resulting nanocomposites are evaluated. Using the Hamilton's principle and the assumed mode method, the motion equation of the GRC-FG cylindrical shells is formulated. Using the time- and frequency-domain methods, free and force vibration properties of the GRC-FG cylindrical shell are analyzed. Numerical cases are provided to study the effects of distribution of graphene, shell radius-to-thickness ratio and temperature changes on the free and force vibration responses of GRC-FG cylindrical shells.

Nonlocal bending characteristics of nanoplate reinforced by functionally graded GPLs exposed to thermo-mechanical loads resting on the Pasternak's foundation

  • Masoud Kiani;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.97-114
    • /
    • 2023
  • The nonlocal strain gradient theory for the static bending analysis of graphene nanoplatelets (GPLs) reinforced the nanoplate is developed in this paper. The nanoplatelet is exposed to thermo-mechanical loads and is also supposed to stand on an elastic foundation. For computing impressive composite material characteristics, the Halpin-Tsai model is selected for various sectors. The various distributions are propounded including UD, FG-O, and FG-X. The represented equations are acquired based on the virtual work and sinusoidal shear and normal deformation theory (SSNDT). Navier's solution as the analytical method is applied to solve these equations. Furthermore, the effects of GPL weight fraction, temperature parameters, distribution pattern and parameters of the foundation are presented and discussed.

Buckling analysis of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers reinforced by graphene platelets

  • Pooya, Nikbakhsh;Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.331-349
    • /
    • 2022
  • In the present work, we proposed an analytical study on buckling behavior of a sandwich plate with polymeric core integrated with piezo-electro-magnetic layers such as BaTiO3 and CoFe2O4 reinforced by graphene platelets (GPLs). The Halpin-Tsai micromechanics model is used to describe the properties of the polymeric core. The governing equations of equilibrium are obtained from first-order shear deformation theory (FSDT) and the Navier's method is employed to solve the equations. The results show the effect of different parameters such as thickness, length, weight fraction of GPLs, and also effect of electric and magnetic field on critical buckling load. The result of this study can be obtained in the aerospace industry and also in the design of sensors and actuators.

Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells

  • Uysal, Mine U.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.849-862
    • /
    • 2016
  • This paper investigates the static buckling behaviours of Functionally Gradient Polymeric Material (FGPM) shells in the form of hemispherical segment. A new FGPM model based on experimental was considered to investigate the buckling problem of thin-walled spherical shells loaded by the external pressure. The spherical shells were formed by FGPM which was produced adding the two types of graphite powders into epoxy resin. The graphite powders were added to the epoxy resin as volume of 3, 6, 9, and 12%. Halpin-Tsai and Paul models were used to determine the elastic moduli of the parts of FGPM. The detailed static buckling analyses were performed by using finite element method. The influences of the types and volume of graphite powders on the buckling behaviour of the FGPM structures were investigated. The buckling loads of hemispherical FGPM shells based on Halpin-Tsai and Paul models were compared with those determined from the analytical solution of non-graphite condition existing for homogeneous material model. The comparisons between these material models showed that Paul model was overestimated. Besides, the critical buckling loads were predicted. The higher critical buckling loads were estimated for the PV60/65 graphite powder due to the compatible of the PV60/65 graphite powder with resin.

Vibrational characteristic of FG porous conical shells using Donnell's shell theory

  • Yan, Kai;Zhang, Yao;Cai, Hao;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.249-260
    • /
    • 2020
  • The main purpose of this research work is to investigate the free vibration of conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. To this end, a shell model is developed based on Donnell's theory. To solve the problem, the analytical Galerkin method is employed together with beam mode shapes as weighting functions. Due to importance of boundary conditions upon mechanical behavior of nanostructures, the analysis is carried out for different boundary conditions. The effects of boundary conditions, semi vertex angle, porosity distribution and graphene platelets on the response of conical shell structures are explored. The correctness of the obtained results is checked via comparing with existing data in the literature and good agreement is eventuated. The effectiveness and the accuracy of the present approach have been demonstrated and it is shown that the Donnell's shell theory is efficient, robust and accurate in terms of nanocomposite problems.