DOI QR코드

DOI QR Code

Vibrational characteristic of FG porous conical shells using Donnell's shell theory

  • Yan, Kai (Key Lab of Building structural Retrofitting and Underground Space Engineering of the Ministry of Education, Shandong Jianzhu University) ;
  • Zhang, Yao (Key Lab of Building structural Retrofitting and Underground Space Engineering of the Ministry of Education, Shandong Jianzhu University) ;
  • Cai, Hao (Key Lab of Building structural Retrofitting and Underground Space Engineering of the Ministry of Education, Shandong Jianzhu University) ;
  • Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
  • Received : 2019.07.30
  • Accepted : 2020.03.05
  • Published : 2020.04.25

Abstract

The main purpose of this research work is to investigate the free vibration of conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. To this end, a shell model is developed based on Donnell's theory. To solve the problem, the analytical Galerkin method is employed together with beam mode shapes as weighting functions. Due to importance of boundary conditions upon mechanical behavior of nanostructures, the analysis is carried out for different boundary conditions. The effects of boundary conditions, semi vertex angle, porosity distribution and graphene platelets on the response of conical shell structures are explored. The correctness of the obtained results is checked via comparing with existing data in the literature and good agreement is eventuated. The effectiveness and the accuracy of the present approach have been demonstrated and it is shown that the Donnell's shell theory is efficient, robust and accurate in terms of nanocomposite problems.

Keywords

Acknowledgement

The research described in this paper, Founded within Shandong Provincial Key Research and Development Program (Grant: 2018GSF120006) and The National Key Research and Development Plan of China (2017YFC0806102).

References

  1. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  2. Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  3. Akbari, M., Kiani, Y., Aghdam, M.M. and Eslami, M.R. (2014), "Free vibration of FGM Levy conical panels", Compos. Struct., 116, 732-746. https://doi.org/10.1016/j.compstruct.2014.05.052.
  4. Ansari, R., Faghih Shojaei, M., Rouhi, H. and Hosseinzadeh, M. (2015), "A novel variational numerical method for analyzing the free vibration of composite conical shells", Appl. Math. Model., 39(10-11), 2849-2860. https://doi.org/10.1016/j.apm.2014.11.012.
  5. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  6. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  7. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  8. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882.
  9. Biswal, M., Sahu, S.K. and Asha, A.V. (2015), "Experimental and numerical studies on free vibration of laminated composite shallow shells in hygrothermal environment", Compos. Struct., 127, 165-174. https://doi.org/10.1016/j.compstruct.2015.03.007.
  10. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
  11. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
  12. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  13. Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108, 241-256. https://doi.org/10.1016/j.oceaneng.2015.07.065.
  14. Civalek, O. (2013), "Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory", Compos. Part B: Eng., 45(1), 1001-1009. https://doi.org/10.1016/j.compositesb.2012.05.018.
  15. Donnell, L.H. (1976), "Beam, Plate and Shells", McGraw-Hill, New York, 377-445.
  16. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.
  17. Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.
  18. Ghavamian, A., Rahmandoust, M. and Ochsner, A. (2012), 62, "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003.
  19. Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study", Compos. Sci. Technol., 65, 2300-2313.https://doi.org/10.1016/j.compscitech.2005.04.021.
  20. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  21. Irie, T., Yamada, G., Kaneko, Y. (1984), "Natural frequencies of truncated conical shells", J. Sound Vib., 92(3), 447-453. https://doi.org/10.1016/0022-460X(84)90391-2.
  22. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  23. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
  24. Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281, 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.
  25. Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring support", Int. J. Mech. Sci., 39, 445-471.
  26. Malekzadeh, P. and Heydarpour, Y. (2013), "Free vibration analysis of rotating functionally graded truncated conical shells", Compos. Struct., 97, 176-188. https://doi.org/10.1016/j.compstruct.2012.09.047.
  27. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Boundary Value Problems, 2013, Art. No. 135, 1-14. https://doi.org/10.1186/1687-2770-2013-1
  28. Marin, M. and Craciun, E.M. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063
  29. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  30. Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", An. St. Univ. Ovidius Constanta, 22(1), 169-188.
  31. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Continuum Mech. and Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4
  32. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpathian J. Mathematics, 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  33. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
  34. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Design, 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018.
  35. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2). https://doi.org/10.12989/scs.2016.22.2.277.
  36. Najafov, A.M. and Sofiyev, A.H. (2013), "The non-linear dynamics of FGM truncated conical shells surrounded by an elastic medium", Int. J. Mech. Sci., 66, 33-44. https://doi.org/10.1016/j.ijmecsci.2012.10.006.
  37. Naomis, S. and Lau, P.C.M. (1990), "Computational tensor analysis of shell structures", Berlin, Heidelberg: Springer-Verlag.
  38. Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84(2), 167-176. https://doi.org/10.1016/j.compstruct.2007.07.003.
  39. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  40. Pelletier Jacob, L. and Vel Senthil,S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079.
  41. Sofiyev, A.H. (2015), "On the vibration and stability of shear deformable FGM truncated conical shells subjected to an axial load", Compos Part B: Eng., 80, 53-62. https://doi.org/10.1016/j.compositesb.2015.05.032.
  42. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
  43. Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.
  44. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale approach for three-phase CNT/Polymer/Fiber laminated nanocomposite structures", Polymer Composites, In Press, DOI: 10.1002/pc.24520.
  45. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  46. Tornabene, F., Fantuzzi, N., Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  47. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  48. Tornabene, F., Viola, E., Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
  49. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015a), "Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials", Compos. Struct., 133, 278-299. https://doi.org/10.1016/j.compstruct.2015.06.052.
  50. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Dimitri, R. (2015b), "Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method", Thin-Wall. Struct., 97, 114-129. https://doi.org/10.1016/j.tws.2015.08.023.
  51. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.
  52. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  53. Xie, X., Jin, G., Ye, T. and Liu, Z. (2014), "Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method", Appl. Acoust., 85, 130-142. https://doi.org/10.1016/j.apacoust.2014.04.006.
  54. Xu, W., Wang, L., Jiang, J. (2016), "Strain Gradient Finite Element Analysis on the Vibration of Double-Layered Graphene Sheets", Int. J. Comput. Methods, 13(3). https://doi.org/10.1142/S0219876216500110.
  55. Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.
  56. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator", Sensor. Actuat., 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.

Cited by

  1. Nonlinear Vibration of a Pre-Stressed Water-Filled Single-Walled Carbon Nanotube Using Shell Model vol.10, pp.5, 2020, https://doi.org/10.3390/nano10050974
  2. The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells vol.38, pp.1, 2021, https://doi.org/10.12989/scs.2021.38.1.047
  3. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
  4. A n-order refined theory for free vibration of sandwich beams with functionally graded porous layers vol.79, pp.3, 2020, https://doi.org/10.12989/sem.2021.79.3.279
  5. Vibration of two types of porous FG sandwich conical shell with different boundary conditions vol.79, pp.4, 2020, https://doi.org/10.12989/sem.2021.79.4.401