Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.6.821

Isogeometric thermal postbuckling of FG-GPLRC laminated plates  

Kiani, Y. (Faculty of Engineering, Shahrekord University)
Mirzaei, M. (Department of Mechanical Engineering, Faculty of Engineering,University of Qom)
Publication Information
Steel and Composite Structures / v.32, no.6, 2019 , pp. 821-832 More about this Journal
Abstract
An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.
Keywords
thermal postbuckling; graphene platelets; NURBS-based isogeometric analysis; Halpin-Tsai rule; nanocomposite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kiani, Y. (2017), "Thermal Post-Buckling of FG-CNT Reinforced Composite Plates", Compos. Struct., 159, 299-306. https://doi.org/10.1016/j.compstruct.2016.09.084   DOI
2 Kiani, Y. (2018a), "NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates", Thin-Wall. Struct., 125, 211-219. https://doi.org/10.1016/j.tws.2018.01.024   DOI
3 Kiani, Y. (2018b), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Thermal Stress., 41, 866-882. https://doi.org/10.1080/01495739.2018.1425645   DOI
4 Kiani, Y. (2018c), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comput. Methods Appl. Mech. Eng., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015   DOI
5 Kiani, Y. (2019), "Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment", Compos. Part B: Eng., 159, 128-137. https://doi.org/10.1016/j.compositesb.2018.08.052   DOI
6 Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086   DOI
7 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061   DOI
8 Kulkarni, D.D., Choi, I., Singamaneni, S.S. and Tsukruk, V.V. (2010), "Graphene oxidepolyelectrolyte nanomembranes", ACS Nano, 4, 4667-4676. https://doi.org/10.1021/nn101204d   DOI
9 Lin, F., Xiang, Y. and Shen, H.S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites A molecular dynamics simulation", Compos. Part B: Eng., 111, 261-269. https://doi.org/10.1016/j.compositesb.2016.12.004   DOI
10 Mirzaei, M. and Kiani, Y. (2017), "Isogeometric Thermal buckling Analysis of Temperature Dependent FG Graphene Reinforced Laminated Plates using NURBS Formulation", Compos. Struct., 180, 606-616. https://doi.org/10.1016/j.compstruct.2017.08.057   DOI
11 Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M. Zimney, E.J., Stach, E.A., Piner, E.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442, 282-286. https://doi.org /10.1038/nature04969   DOI
12 Shen, H.S., Xiang, Y. and Lin, F. (2018), "Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical panels under axial compression in thermal environments", Int. J. Mech. Sci., 135, 398-409. https://doi.org/10.1016/j.ijmecsci.2017.11.031   DOI
13 Song, M., Yang, J., Kitipornchai, S. and Zhu, W. (2017), "Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates", Int. J. Mech. Sci., 131, 345-355. https://doi.org/10.1016/j.ijmecsci.2017.07.017   DOI
14 Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B: Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043   DOI
15 Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2016), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material", J. Thermal Stress., 40, 1254-1274. https://doi.org/10.1080/01495739.2017.1338928
16 Thom, D.V., Kien, N.D., Duc, N.D., Duc, D.H. and Tinh, B.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022   DOI
17 Vuong, P.M. and Duc, N.D. (2018), "Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment", Aerosp. Sci. Technol., 79, 383-398. https://doi.org/10.1016/j.ast.2018.05.058   DOI
18 Parashar, A. and Mertiny, P. (2012), "Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite", Nanoscale Res. Lett., 7, 515-520. https://doi.org/10.1186/1556-276X-7-515   DOI
19 Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y. (2010), "Anisotropic mechanical properties of graphene sheets from molecular dynamics", Physica B: Condensed Matter, 405, 1301-1306. https://doi.org/10.1016/j.physb.2009.11.071   DOI
20 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, I.V. (2004), "Electric filed effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896   DOI
21 Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polymer, 52, 5-25. https://doi.org/10.1016/j.polymer.2010.11.042   DOI
22 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z. and Koratkar, N. (2009a), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3, 3884-3990. https://doi.org/10.1021/nn9010472   DOI
23 Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009b), "Buckling resistant graphene nanocomposites", Appl. Phys. Lett., 95, Art No. 223103. https://doi.org/10.1063/1.3269637
24 Raju, K.K. and Rao, G.V. (1988), "Thermal Postbuckling of a square plate resting on an elastic foundation by finite element method", Comput. Struct., 28, 195-199. https://doi.org/10.1016/0045-7949(88)90039-9   DOI
25 Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized graphene", Nanotechnology, 17, 864-870. https://doi.org/10.1088/0957-4484/17/3/042   DOI
26 Wu, H., Kitipornchai, S. and Yang, J. (2017), "Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates", Mater. Des., 132, 430-441. https://doi.org/10.1016/j.matdes.2017.07.025   DOI
27 Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018a), "Buckling of graphene platelet reinforced composite cylindrical shell with cutout", Int. J. Struct. Stabil. Dyn., 18, Article Number 1850040. https://doi.org/10.1142/S0219455418500402
28 Wang, Y., Feng, C., Zhao, Z., Lu, F. and Yang, J. (2018b), "Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout", Compos. Struct., 197, 72-97. https://doi.org/10.1016/j.compstruct.2018.05.056   DOI
29 Wang, Y., Feng, C., Zhao, Z. and Yang, J. (2018c), "Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL)", Compos. Struct., 202, 38-46. https://doi.org/10.1016/j.compstruct.2017.10.005   DOI
30 Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene plateletreinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048   DOI
31 Yang, J., Chen, D. and Kitipornchai, S. (2018a), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090   DOI
32 Yang, Z., Yang, J., Liu, A. and Fu, J. (2018b), "Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches", Compos. Struct.res, 204, 301-312. https://doi.org/10.1016/j.compstruct.2018.07.072   DOI
33 Shen, H.S., Xiang, Y. and Lin, F. (2017a), "Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. https://doi.org/10.1016/j.engstruct.2017.02.069   DOI
34 Yu, Y., Shen, H.S., Wang, H. and Hui, D. (2018), "Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments", Compos. Part B: Eng., 135, pp. 72-83. https://doi.org/10.1016/j.compositesb.2017.09.045   DOI
35 Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), "Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization", Steel Compos. Struct., Int. J., 21(6), 1389-1410. http://dx.doi.org/10.12989/scs.2016.21.6.1389   DOI
36 Scarpa, F., Adhikari, S. and Phani, A.S. (2009), "Effective elastic mechanical properties of single layer graphene sheets", Nanotechnology, 20, Art No. 065709. https://doi.org/10.1088/0957-4484/20/6/065709
37 Shen, H.S. and Xiang, Y. (2018a), "Postbuckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compression in thermal environments", Comput. Methods Appl. Mech. Eng., 330, 64-82. https://doi.org/10.1016/j.cma.2017.10.022   DOI
38 Shen, H.S. and Xiang, Y. (2018b), "Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments", Thin-Wall. Struct., 124, 151-160. https://doi.org/10.1016/j.tws.2017.12.005   DOI
39 Shen, H.S., Xiang, Y., Lin, F. and Hui D. (2017b), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020   DOI
40 Shen, H.S., Xiang, Y. and Lin, F. (2017c), "Thermal buckling and postbuckling of functionally graded graphenereinforced composite laminated plates resting on elastic foundations", Thin-Wall. Struct., 118, 229-237. https://doi.org/10.1016/j.tws.2017.05.006   DOI
41 Duc, N.D. and Nguyen, P.D. (2017), "The dynamic response and vibration of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundation", Materials, 10, Article Number 1194. https://doi.org/10.3390/ma10101194
42 Zhang, Y.Y., Wang, C.M., Cheng, Y. and Xiang, Y. (2011), "Mechanical properties of bilayer graphene sheets coupled by sp3 bonding", Carbon, 49, 4511-4517. https://doi.org/10.1016/j.carbon.2011.06.058   DOI
43 Zhao, X., Zhang, Q., Chen, D. and Lu, P. (2010), "Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites", Macromolecules, 43, 2357-2363. https://doi.org/10.1021/ma902862u   DOI
44 Cadelano, E., Palla, P.L., Giordano and S. and Colombo, L. (2009), "Nonlinear elasticity of monolayer graphene", Physical Review Letters, 102, Art No. 235502. https://doi.org/10.1103/PhysRevLett.102.235502
45 Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020   DOI
46 Das, T.K. and Prusty, S. (2013), "Graphene-based polymer composites and their applications", Polymer-Plast. Technol. Eng., 52, 319-331. https://doi.org/10.1080/03602559.2012.751410   DOI
47 Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Thanh, N.V. (2017a), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016   DOI
48 Duc, N.D., Quan, T.Q. and Nguyen, D.P. (2017b), "New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells", Aerosp. Sci. Technol., 71, 360-372. https://doi.org/10.1016/j.ast.2017.09.031   DOI
49 Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008   DOI
50 Atri, H.R. and Shojaee, S. (2018), "Truncated hierarchical Bsplines in isogeometric analysis of thin shell structures", Steel Compos. Struct., Int. J., 26(2), 171-182. http://dx.doi.org/10.12989/scs.2018.26.2.171