Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.5.687

Semi-analytical solutions of free and force vibration behaviors of GRC-FG cylindrical shells  

Lei, Zuxiang (Institute of Geotechnical Engineering, School of Civil Engineering and Architecture, East China Jiaotong University)
Tong, Lihong (Institute of Geotechnical Engineering, School of Civil Engineering and Architecture, East China Jiaotong University)
Publication Information
Steel and Composite Structures / v.32, no.5, 2019 , pp. 687-699 More about this Journal
Abstract
In this paper, free and force vibration behaviors of graphene-reinforced composite functionally graded (GRC-FG) cylindrical shells in thermal environments are investigated based on Reddy's third-order shear deformation theory (HSDT). The GRC-FG cylindrical shells are composed of piece-wise pattern graphene-reinforced layers which have different volume fraction. Based on the extended Halpin-Tsai micromechanical model, the effective material properties of the resulting nanocomposites are evaluated. Using the Hamilton's principle and the assumed mode method, the motion equation of the GRC-FG cylindrical shells is formulated. Using the time- and frequency-domain methods, free and force vibration properties of the GRC-FG cylindrical shell are analyzed. Numerical cases are provided to study the effects of distribution of graphene, shell radius-to-thickness ratio and temperature changes on the free and force vibration responses of GRC-FG cylindrical shells.
Keywords
vibration; graphene; HSDT; extended Halpin-Tsai model; analytical modeling;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Kiani, Y. (2018), "Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation", Comput. Methods Appl. Mech. Eng., 332, 86-101. https://doi.org/10.1016/j.cma.2017.12.015   DOI
2 Kumar, P. and Srinivas, J. (2018), "Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation", Steel Compos. Struct., Int. J., 29(5), 569-578. https://doi.org/10.12989/scs.2018.29.5.569
3 Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., Int. J., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495
4 Lei, Z., Su, Q., Zeng, H., Zhang, Y. and Yu, C. (2018), "Parametric studies on buckling behavior of functionally graded graphenereinforced composites laminated plates in thermal environment", Compos. Struct., 202, 695-709. https://doi.org/10.1016/j.compstruct.2018.03.079   DOI
5 Li, F.-M., Kishimoto, K. and Huang, W.-H. (2009), "The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method", Mech. Res. Commun., 36(5), 595-602. https://doi.org/10.1016/j.mechrescom.2009.02.003   DOI
6 Liew, K.M., Zhao, X. and Lee, Y.Y. (2012), "Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads", Compos. Part B: Eng., 43(3), 1621-1630. https://doi.org/10.1016/j.compositesb.2011.06.004   DOI
7 Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001   DOI
8 Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041   DOI
9 Ansari, R., Torabi, J. and Shojaei, M.F. (2017), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B: Eng., 109, 197-213. https://doi.org/10.1016/j.compositesb.2016.10.050   DOI
10 Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024   DOI
11 Arani, A.G., Kolahdouzan, F. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., Int. J., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273
12 Asadi, H. (2017), "Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments", Acta Astronautica, 138, 214-224. https://doi.org/10.1016/j.actaastro.2017.05.039   DOI
13 Asadi, H. and Beheshti, A.R. (2018), "On the nonlinear dynamic responses of FG-CNTRC beams exposed to aerothermal loads using third-order piston theory", Acta Mechanica, 229(6), 2413-2430. https://doi.org/10.1007/s00707-018-2121-7   DOI
14 Asadi, H. and Wang, Q. (2017a), "Dynamic stability analysis of a pressurized FG-CNTRC cylindrical shell interacting with supersonic airflow", Compos. Part B: Eng., 118, 15-25. https://doi.org/10.1016/j.compositesb.2017.03.001   DOI
15 Asadi, H. and Wang, Q. (2017b), "An investigation on the aeroelastic flutter characteristics of FG-CNTRC beams in the supersonic flow", Compos. Part B: Eng., 116, 486-499. https://doi.org/10.1016/j.compositesb.2016.10.089   DOI
16 Asadi, H., Souri, M. and Wang, Q. (2017), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003   DOI
17 Gasser, L.F.F. (1987), "Free vibrations of thin cylindrical shells containing liquid", M.S. Thesis; Federal University of Rio de Janeiro, PEC.COPPE-UFRJ, Rio de Janeiro, Brazil. [In Portuguese]
18 Mehri, M., Asadi, H. and Wang, Q. (2016a), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Methods Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017   DOI
19 Mehri, M., Asadi, H. and Wang, Q. (2016b), "On dynamic instability of a pressurized functionally graded carbon nanotube reinforced truncated conical shell subjected to yawed supersonic airflow", Compos. Struct., 153, 938-951. https://doi.org/10.1016/j.compstruct.2016.07.009   DOI
20 Mehri, M., Asadi, H. and Kouchakzadeh, M.A. (2017), "Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression", Comput. Methods Appl. Mech. Eng., 318, 957-980. https://doi.org/10.1016/j.cma.2017.02.020   DOI
21 Gong, S.W., Toh, S.L. and Shim, V.P.W. (1994), "The elastic response of orthotropic laminated cylindrical shells to lowvelocity impact", Compos. Eng., 4(2), 247-266. https://doi.org/10.1016/0961-9526(94)90030-2   DOI
22 Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B: Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005   DOI
23 Harbaoui, I., Casimir, J.B., Khadimallah, M.A. and Chafra, M. (2018), "A new prestressed dynamic stiffness element for vibration analysis of thick circular cylindrical shells", Int. J. Mech. Sci., 140, 37-50. https://doi.org/10.1016/j.ijmecsci.2018.02.046   DOI
24 Song, Z.G., Zhang, L.W. and Liew, K.M. (2016a), "Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory", Int. J. Mech. Sci., 105, 90-101. https://doi.org/10.1016/j.ijmecsci.2015.11.019   DOI
25 Bahrami, M.N., Allahkarami, F. and Saryazdi, M.G. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-ofplane motion", Steel Compos. Struct., Int. J., 26(6), 673-691. https://doi.org/10.12989/scs.2018.26.6.673
26 Chu, K., Wang, X.-h., Li, Y.-b., Huang, D.-j., Geng, Z.-r., Zhao, X.-l., Liu, H. and Zhang, H. (2018), "Thermal properties of graphene/metal composites with aligned graphene", Mater. Des., 140, 85-94. https://doi.org/10.1016/j.matdes.2017.11.048   DOI
27 Dym, C.L. (1973), "Some new results for the vibrations of circular cylinders", J. Sound Vib., 29(2), 189-205. https://doi.org/10.1016/S0022-460X(73)80134-8   DOI
28 Song, Z.G., Zhang, L.W. and Liew, K.M. (2016b), "Dynamic responses of CNT reinforced composite plates subjected to impact loading", Compos. Part B: Eng., 99, 154-161. https://doi.org/10.1016/j.compositesb.2016.06.034   DOI
29 Tahouneh, V. (2018), "Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets", Steel Compos. Struct., Int. J., 28(5), 541-557. https://doi.org/10.12989/scs.2018.28.5.541
30 Tornabene, F., Arefi, M., Mohammadi, M., Tabatabaeian, A. and Dimitri, R. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct, Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
31 Vertuccio, L., Guadagno, L., Spinelli, G., Russo, S. and Iannuzzo, G. (2017), "Effect of carbon nanotube and functionalized liquid rubber on mechanical and electrical properties of epoxy adhesives for aircraft structures", Compos. Part B: Eng., 129, 1-10. https://doi.org/10.1016/j.compositesb.2017.07.021   DOI
32 Shakouri, M. and Kouchakzadeh, M.A. (2017), "Analytical solution for vibration of generally laminated conical and cylindrical shells", Int. J. Mech. Sci., 131-132, 414-425. https://doi.org/10.1016/j.ijmecsci.2017.07.016   DOI
33 Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FGCNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048   DOI
34 Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2009), "Buckling resistant graphene nanocomposites", Appl. Phys. Lett., 95(22), 223103. https://doi.org/10.1063/1.3269637   DOI
35 Reddy, J.N. (1999), "On laminated composite plates with integrated sensors and actuators", Eng. Struct., 21(7), 568-593.   DOI
36 Shen, H.-S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213-216, 196-205. https://doi.org/10.1016/j.cma.2011.11.025   DOI
37 Shen, H.-S., He, X.Q. and Yang, D.-Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Non-Linear Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010   DOI
38 Shen, H.-S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B: Eng., 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032   DOI
39 Sofiyev, A.H., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the nonlinear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048   DOI
40 Hosseini, S.M. and Zhang, C. (2018), "Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., Int. J., 27(3), 255-271. https://doi.org/10.12989/scs.2018.27.3.255
41 Jensen, B.D., Odegard, G.M., Kim, J.-W., Sauti, G., Siochi, E.J. and Wise, K.E. (2018), "Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness", Compos. Sci. Technol., 166, 10-19. https://doi.org/10.1016/j.compscitech.2018.02.008   DOI
42 Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Vibration analysis of thin cylindrical shells using wave propagation approach", J. Sound Vib., 239(3), 397-403. https://doi.org/10.1006/jsvi.2000.3139   DOI
43 Wan, X., Fan, Y., Ma, W., Li, S., Huang, X. and Yu, J. (2018), "One-step synthesis of nano-silicon/graphene composites using thermal plasma approach", Mater. Lett., 220, 144-147. https://doi.org/10.1016/j.matlet.2018.03.042   DOI
44 Yang, J., Wu, H. and Kitipornchai, S. (2018), "Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections", Steel Compos. Struct., Int. J., 29(3), 319-332. https://doi.org/10.12989/scs.2018.29.3.319
45 Zhan, J.M., Yao, X.H., Li, W.H. and Zhang, X.Q. (2017), "Tensile mechanical properties study of SiC/graphene composites based on molecular dynamics", Computat. Mater. Sci., 131, 266-274. https://doi.org/10.1016/j.commatsci.2017.02.006   DOI
46 Zhang, W., Fang, Z., Yang, X.-D. and Liang, F. (2018), "A series solution for free vibration of moderately thick cylindrical shell with general boundary conditions", Eng. Struct., 165, 422-440. https://doi.org/10.1016/j.engstruct.2018.03.049   DOI
47 Keleshteri, M.M., Asadi, H. and Aghdam, M.M. (2019), "Nonlinear bending analysis of FG-CNTRC annular plates with variable thickness on elastic foundation", Thin-Wall. Struct., 135, 453-462. https://doi.org/10.1016/j.tws.2018.11.020   DOI
48 Keleshteri, M.M., Asadi, H. and Wang, Q. (2017a), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin-Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035   DOI
49 Keleshteri, M.M., Asadi, H. and Wang, Q. (2017b), "Postbuckling analysis of smart FG-CNTRC annular sector plates with surface-bonded piezoelectric layers using generalized differential quadrature method", Comput. Methods Appl. Mech. Eng., 325, 689-710. https://doi.org/10.1016/j.cma.2017.11.015   DOI
50 Keleshteri, M.M., Asadi, H. and Wang, Q. (2018), "On the snapthrough instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers", Comput. Methods Appl. Mech. Eng., 331, 53-71. https://doi.org/10.1016/j.cma.2017.11.015   DOI
51 Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021   DOI