• Title/Summary/Keyword: Half-value layers

Search Result 30, Processing Time 0.026 seconds

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask (Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성)

  • Kim, Jong-Ock;Lim, Kee-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.67-71
    • /
    • 2014
  • An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.

Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture (K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계 : 분류기 구조의 비교연구 및 해석)

  • Jeong, Byeong-Jin;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.114-123
    • /
    • 2018
  • This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

Growth and Structural Characterizations of CdSe/GaAs Eppilayers by Electron Beam Evaporation Method

  • Yang, Dong-Ik;Sung-Mun ppark
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.02a
    • /
    • pp.36-36
    • /
    • 1995
  • The cubic (zinc blende) CdSe eppilayers were grown on GaAs(100) substrates by electron beam (e-beam) evapporation technique. X-ray scans with copper $K\alpha$ radiation indicate that the CdSe eppilayers are zinc blende. The lattice pparameter obtained from the (400) reflection is 6.077$\AA$, which is in excellent agreement with the value repported in the literature for zinc blende CdSe. The orientation of as-grown CdSe eppilayer is determined by electron channeling ppatterns(ECpp). The crystallinity of heteroeppitaxial CdSe layers were investigated based on the double crystal x-ray rocking curve(DCRC). The deppendence of the rocking curve width on layer thickness was studied. The FWHM(full width at half maximum) of CdSe eppilayers grown on GaAs(100) substrates is decreasing with increasing eppilayer thickness. The carrier concentration and mobility of the as-grown eppilayers deduced Hall data by van der ppauw method, are about 7$\times$1017 cm-3 and 2$\times$102 $\textrm{cm}^2$ / sec at room tempperature, resppectively. The energy gapp was determinded from the pphotocurrent sppectrum. In pphotocurrent sppectrum of a 1-${\mu}{\textrm}{m}$-thick CdSe eppilayer at 30K, the ppeak at 1.746 eV is due to the free exciton of cubic CdSe. In summary, We have shown that eppilayers of zinc blende CdSe can be grown on GaAs(100) substrates by e-beam, desppite the large mismatch between eppilayer and substrate, as well as the natural ppreference for CdSe to form in the wurtzite structure.

  • PDF

High Efficiency Green Phosphorescent Organic Light Emitting Devices using the Emission Layer of (TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 ((TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3 발광층을 이용한 고효율 녹색 인광소자)

  • Jang, Ji-Geun;Shin, Sang-Baie;Shin, Hyun-Kwan;Kim, Won-Ki;Ryu, Sang-Ouk;Chang, Ho-Jung;Gong, Myoung-Seon;Lee, Jun-Yeob
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.347-351
    • /
    • 2008
  • We have fabricated and evaluated newNew high high-efficiency green green-light light-emitting phosphorescent devices with an emission layer of [$TCTA/TCTA_{1/3}TAZ_{2/3}/TAZ$] : $Ir(ppy)_3$ were fabricated and evaluated, and compared the electroluminescence characteristics of these devices were compared with the conventional phosphorescent devices with emission layers of ($TCTA_{1/3}TAZ_{2/3}$) : $Ir(ppy)_3$ and (TCTA/TAZ) : $Ir(ppy)_3$. The current density, luminance, and current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90^{\circ}{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ were $95\;mA/cm^2$, $25000\;cd/m^2$, and 27 cd/A at an applied voltage of 10 V, respectively. The maximum current efficiency was 52 cd/A under the a luminance value of $400\;cd/m^2$. The peak wavelength and FWHM (FWHM (full width at half maximum) in the electroluminescence spectral were 513 nm and 65 nm, respectively. The color coordinate was (0.30, 0.62) on the CIE (Commission Internationale de I'Eclairage) chart. Under the a luminance of $15000\;cd/m^2$, the current efficiency of the a device with an emission layer of ($80{\AA}-TCTA/90{\AA}-TCTA_{1/3}TAZ_{2/3}/130{\AA}-TAZ$) : 10%-$Ir(ppy)_3$ was 34 cd/A, which has beenshowed an improvement of improved 1.7 and 1.4 times compared to those of the devices with emission layers of ($300{\AA}-TCTA_{1/3}TAZ_{2/3}$) : 10%-$Ir(ppy)_3$ and ($100{\AA}-TCTA/200{\AA}$-TAZ) : 10%-$Ir(ppy)_3$, respectively.

Central Axis Percentage Depth-Dose in a Water Phantom Irradiated by Conventional X-rays (Water Phantom 속 Conventional X-ray 중심축상의 깊이 선량 백분율)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae;Oh, Jang-Jin;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • Central axis percentage depth-doses, P(%), were measured at the points from the 2.5cm depth of reference point to 20 cm depth with 2.5 cm interval. Distance from the X-ray target to the water phantom($30{\times}30{\times}30cm^3$) surface was 1 m, and at this point three different beam sizes of $5cm{\phi},\;10cm{\phi},\;and\;15cm{\phi}$ were used. While the X-ray tube voltage varied from 150 to 250 kV, the tube current remained constant at 5 mA. Absorbed dose rate in water, $\dot{D}_w$, was determined using the air kerma calibration factor, $N_k$, which was derived from the exposure calibration factor, $N_x$, of the NE 2571 ion chamber. The reference exposure rate, $\dot{X}_c$, was measured using the Exradin A-2 ion chamber calibrated at ETL, Japan. The half value layers of the X-rays determined to meet ETL calibration qualities. The absorbed dose rates determined at the calibration point were compared to the values obtained from Burlin's general cavity theory, and the percentage depth-dose values determined from $N_k$ showed a good agreement with the values of the published depth dose data(BJR Suppl. 17).

  • PDF

GPR Analysis on Underground Features and Foundation Structure of Cheomseongdae, Gyeongju (GPR 탐사를 통해 본 경주 첨성대 기초 및 주변의 유구 분석)

  • Oh, Hyundok;Kwon, Moonhee;Jang, Hangilro
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.264-271
    • /
    • 2019
  • Cheomseongdae in Gyeongju, known as an astronomical observatory, is a cultural monument with great historical, academic, and artistic value, as its unique shape is preserved well in its original form. The outer structure, ground stability, and seismic reliability of Cheomseongdae have been assessed by numerous researchers through various scientific methods, but research on the underground structure has been insufficient. This paper contains detailed models of the underground structure of Cheomseongdae interpreted in 2D and 3D images based on the data acquired through GPR surveys conducted of features in and around the base of Cheomseongdae. As a result, the existence of twelve small features arranged in a circle, although only about half of them remain, was confirmed at a depth of 0.4 - 0.6m. Furthermore, a structure three bays long (north-south direction) and four bays wide (east-west direction) was detected beneath Cheomseongdae at the depth of 0.7 - 1.0m. Other than 2 layers of foundations as is known, a square structure with the dimensions of 7m × 7m is situated at a depth of 0.6m, directly under Cheomseongdae, and what is reading that is expected to be the foundation structure of Cheomseongdae was detected and confirmed. This foundation structure is circular with a diameter in the east-west direction of 11m and in the north-south direction of 12m. The northern, western, and eastern edges of this foundation structure are about 1m away from the foundation of Cheomseongdae, whereas the the south side extends to about 5m wide.

Hysteretic characteristics of steel plate shear walls: Effects of openings

  • Ali, Mustafa M.;Osman, S.A.;Yatim, M.Y.M.;A.W., Al Zand
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.687-708
    • /
    • 2020
  • Openings in steel plate shear walls (SPSWs) are usually used for decorative designs, crossing locations of multiple utilities and/or structural objectives. However, earlier studies showed that generating an opening in an SPSW has a negative effect on the cyclic performance of the SPSW. Therefore, this study proposes tripling or doubling the steel-sheet-plate (SSP) layer and stiffening the opening of the SPSW to provide a solution to undesirable opening effects, improve the SPSW performance and provide the infill option of potential strengthening measures after the construction stage. The study aims to investigate the impact of SSP doubling with a stiffened opening on the cyclic behaviour, expand the essential data required by structural designers and quantify the SPSW performance factors. Validated numerical models were adopted to identify the influence of the chosen parameters on the cyclic capacity, energy dissipation, ductility, seismic performance factors (SPF) and stiffness of the suggested method. A finite Element (FE) analysis was performed via Abaqus/CAE software on half-scale single-story models of SPSWs exposed to cyclic loading. The key parameters included the number of SSP layers, the opening size ratios corresponding to the net width of the SSP, and the opening shape. The findings showed that the proposed assembly method found a negligible influence in the shear capacity with opening sizes of 10, 15, 20%. However, a deterioration in the wall strength was observed for openings with sizes of 25% and 30%. The circular opening is preferable compared with the square opening. Moreover, for all the models, the average value of the obtained ductility did not show substantial changes and the ultimate shear resistance was achieved after reaching a drift ratio of 4.36%. Additionally, the equivalent sectional area of the SSP in the twin and triple configuration of the SPSWs demonstrated approximately similar results. Compared with the single SSP layer, the proposed configuration of the twin SSP layer with a stiffened opening suggest to more sufficiency create SSP openings in the SPSW compared to that of other configurations. Finally, a tabular SPF quantification is exhibited for SPSWs with openings.

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea (황해 남동부 해역의 월별 용존무기탄소 재고 추정)

  • KIM, SO-YUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.194-210
    • /
    • 2022
  • The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.