Browse > Article
http://dx.doi.org/10.6117/kmeps.2014.21.3.067

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask  

Kim, Jong-Ock (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Lim, Kee-Young (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.21, no.3, 2014 , pp. 67-71 More about this Journal
Abstract
An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.
Keywords
GaN; MOCVD; Pt metal-mask; Si(111) substrate; nano-pattern;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Strite and H. Morkoc, "GaN, AlN, and InN: A review", J. Vac. Sci. Technol. B. 10(4), 1237 (1992).   DOI
2 T. Tetsuya, T. Hideo, S. Shigetoshi and S. Hiromitsu, "Optcial Properties of Strained AlGaN and GaInN on GaN", Jpn. J. Appl. Phys. 36(2B), L177 (1997).   DOI   ScienceOn
3 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita H. Kiyoku and Y. Sugimoto, "InGaN-Based Multi-Quant$\mu$m-Well-Structure Laser Diodes", Jpn. J. Appl. Phys. 35(1B), L74 (1996).   DOI   ScienceOn
4 R. Chu, Z. Chen and Y. Pei, "MOCVD-Grown AlGaN Buffer GaN HEMTs With V-Gates for Microwave Power Applications", IEEE Trans. Electron Devices. 30(9), 910 (2009).   DOI
5 S. C. Jain, M. Willander, J. Narayan and R. Van Overstraeten, "III-nitrides: Growth, characterization, and properties", J. Appl. Phys. 87(3), 965 (2000).   DOI   ScienceOn
6 J. Park, M. W. Shin and C. C. Lee, "Measurement of temperature profiles on visible light-emitting diodes by use of a nematic liquid crystal and an infrared laser", Optics Lett. 29(22), 2657 (2004).
7 L. Kim and M. W. Shin, "Thermal Resistance Measurement of LED Package with Multichips", IEEE Trans. Compon Packag Tech. 30(4), 632 (2007).   DOI   ScienceOn
8 H. J. Kang, H. Y. Song and M. Y. Jeong, "Design of Structure for High-Efficiency LEDs On Patterned Sapphire SubStrate", J. Microelectron. Packag. Soc., 18(4), 91 (2011).
9 A. Dadgar, J. Blaing, A. Diez and A. Krost, "Crack-Free, Highly Conducting GaN layers on Si Substrates by Ge Doping", Appl. Phys. Ex., 4, 011001 (2011).   DOI
10 B. K. Yu, M. Y. Kim and T. S. Oh, "Anisotropic Wet-Etching Process Of Si substrate for Formation of Thermal Vias in High-Power LED Packages", J. Microelectron. Packag. Soc., 19(4), 51 (2012).   DOI
11 A. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Da$\mu$miller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F. A. Ponce, E. Kohn and A. Krost, "MOVPE growth of GaN on Si(111) substrates", J. Cryst. Growth. 248, 556 (2003).   DOI
12 X. Zhang, S. J. Chua, P. Li, K. B. Chong and Z. C. Feng, "Enhanced optical emission from GaN films grown on a silicon substrate", Appl. Phys. Lett. 74(14), 1984 (1999).   DOI
13 A. Reiher, J. Bläsing, A. Dadgar, A. Diez and A. Krost, "Efficient stress relief in GaN heteroepitaxy on Si(111) using lowtemperature AlN interlayers", J. Cryst. Growth. 248, 563 (2003).   DOI
14 S. Pal and C. Jacon, "Silicon-a new substrate for GaN growth", Bull. Mater. Sci. 27(6), 501 (2004).   DOI   ScienceOn
15 H. Ishikawa, K. Shimanaka, M. Azfar bin, M Amir, Y. Hara and M. Nakanishi, "Improved MOCVD growth of GaN on Sion- porous-silicon substrates", Phys. Stat. Sol(C). 7(7), 2049 (2010).   DOI
16 L. S. Wang, S. J. Chua, S. Tripathy, K. Y. Zang, B. Z. Wang and J. H. Teng, "Nanopatterning and selective area epitaxy of GaN on Si substrate", Proc. of SPIE., 6894, 68940 (2008).
17 C. C. Huang, S. J. Chang, C. H. Kuo, C. H. Wu, C. H. Ko, H. Wann, Y. C. Cheng and W. J. Lin, "Single Crystalline GaN Epitaxial Layer Prepared on Nano-patterned Si(001) Substrate", J. Electrochem. Soc. 158(6), H626 (2011)   DOI   ScienceOn
18 S. D. Hersee, X. Y. Sun, X. Wang and M. N. Fairchild, "Nanoheteroepitaxial growth of GaN on Si nanopillar arrays", Appl. Phys. Lett., 97, 124308 (2005).
19 Y. Li, S. You, M. Zhu, L. Zhao and W. Hou, "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire", Appl. Phys. Lett., 98, 151102 (2011).   DOI
20 J. Elsner and R. Jones, "Theory of Threading Edge and Screw Dislocation in GaN", Phys. Rev. Lett., 79(19), 3672 (1997).   DOI   ScienceOn
21 H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo and M. umeno, "GaN on Si substrate with AlGaN/AIN Intermediate Layer", Jpn. J. Appl. Phys., 38(5A), L492 (1999).   DOI
22 Josh Abell and T. D. Moustakas, "The role of dislocations as nonradiative recombination center in InGaN quantum wells", Appl. Phys. Lett., 92, 091901 (2008).   DOI   ScienceOn