DOI QR코드

DOI QR Code

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea

황해 남동부 해역의 월별 용존무기탄소 재고 추정

  • KIM, SO-YUN (Department of Oceanography, Pusan National University) ;
  • LEE, TONGSUP (Department of Oceanography, Pusan National University)
  • Received : 2022.09.06
  • Accepted : 2022.11.22
  • Published : 2022.11.30

Abstract

The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.

동중국해 북부와 경계를 이루는 황해 남동부 해역에 대해 무기탄소의 월별 재고와 변동을 초래하는 플럭스들을 상자 모형으로 모의하였다. 월별 용존무기탄소의 자료는 네 차례 계절을 대표하는 관측 결과에 최근 발표된 논문의 자료를 발췌하여 구성하였다. 연간 용존무기탄소(CT)의 재고가 정상상태에 있으며 표층에서 이류에 의한 변동이 무시할 정도로 작다고 가정하고 표층과 심층의 2-상자 모형을 사용했다. 모의 결과 월별 표층과 심층 사이의 재고는 혼합층 두께의 변동에 따른 혼합 플럭스가 -40~35 mol C m-2 month-1의 규모로 주도했다. 대기로부터 유입되는 CO2 플럭스는 약 2 mol C m-2 yr-1 이고, 혼합 플럭스의 1/100 미만으로 작았다. 생물 펌프 플럭스는 4~5 mol C m-2 yr-1 범위로 추정되었는데 이는 현장 실측 자료에 비해서 절반가량 수준이다. 물기둥의 CT 재고는 동계 혼합이 끝나는 4월에 최대를 보이며 성층기에 조금씩 줄어든다. 따라서 CT 총량은 성층기에 혼합기보다 높게 나타나는데 정상상태가 유지되려면 최대와 최소의 차분인 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1)이 동중국해로 송출되어야 한다. 이를 황해 남부 경계 전체에 대해 외삽하면 4 × 109 g C yr-1 규모이다. 이 플럭스는 개념상 대륙붕 펌프에 해당한다. 실제로 태평양 외양역에 도달하려면 동중국해를 거쳐야 하므로 실제로 대륙붕 펌프로 기여하는 플럭스의 크기는 이보다 현저하게 낮을 것으로 전망된다. 자료 부족과 계산에 필수적인 가정에 수반되는 오류 때문에 추정값은 상당한 크기의 오차를 포함하지만 모의를 통해 CT의 변동을 초래하는 플럭스 사이의 상대적인 기여도와 범위를 제약할 수 있었고 향후 연구에서 주목해야 할 사항을 도출할 수 있었다.

Keywords

Acknowledgement

이 연구는 부산대학교 기본연구지원사업(2년)의 지원을 받아 수행되었습니다.

References

  1. Anderson, L.A. and J.L. Sarmiento, 1994. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles, 8(1): 65-80. https://doi.org/10.1029/93GB03318
  2. Bakker, D.C.E., B. Pfeil, C.S. Landa, N. Metzl, K.M. O'Brien, A. Olsen, K. Smith, C. Cosca, S. Harasawa, S.D. Jones, S. Nakaoka, Y. Nojiri, U. Schuster, T. Steinhoff, C. Sweeney, T. Takahashi, B. Tilbrook, C. Wada, R. Wanninkhof, S.R. Alin, C.F. Balestrini, L. Barbero, N.R. Bates, A.A. Bianchi, F. Bonou, J. Boutin, Y. Bozec, E.F. Burger, W.J. Cai, R.D. Castle, L. Chen, M. Chierici, C. Kim, W. Evans, C. Featherstone, R.A. Feely, A. Fransson, C. Goyet, N. Greenwood, L. Gregor, S. Hankin, N.J. Hardman-Mountford, J. Harlay, J. Hauck, M. Hoppema, M.P. Humphreys, C.W. Hunt, B. Huss, J.S.P. Ibanhez, T. Johannessen, R. Keeling, V. Kitidis, A. Kortzinger, A. Kozyr, E. Krasakopoulou, A. Kuwata, P. Landschutzer, S.K. Lauvset, N. Lefevre, C.L. Monaco, A. Manke, J.T. Mathis, L. Merlivat, F.J. Millero, P.M.S. Monteiro, D.R. Munro, A. Murata, T. Newberger, A.M. Omar, T. Ono, K. Paterson, D. Pearce, D. Pierrot, L.L. Robbins, S. Saito, J. Salisbury, R. Schlitzer, B. Schneider, R. Schweitzer, R. Sieger, I. Skjelvan, K.F. Sullivan, S.C. Sutherland, A.J. Sutton, K. Tadokoro, M. Telszewski, M. Tuma, S.M.A.C. van Heuven, D. Vandemark, B. Ward, A.J. Watson and S. Xu, 2016. A multi-decade record of high quality fCO2data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2): 383-413. DOI: 10.5194/essd-8-383-2016.
  3. Chen, C.-T.A., T.-H. Huang, Y.-C. Chen, Y. Ba, X. He and Y. Kang, 2013. Air-sea exchanges of CO2 in the world's coastal seas. Biogeosciences, 10(10): 6509-6544. DOI: 10.5194/bg-10-6509-2013.
  4. Choi, Y., D. Kim, S. Cho and T.-W. Kim, 2019. Southeastern Yellow Sea as a sink for atmospheric carbon dioxide. Mar. Poll. Bull., 149: 110550. DOI: 10.1016/j.marpolbul.2019.110550.
  5. de Boyer Montegut, C., G. Madec, A.S. Fischer, A. Lazar and D. Iudicone, 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 199: C12003. DOI: 10.1029/2004JC002378.
  6. Global Carbon Project, 2022. Carbon budget and trends 2021.
  7. Guo, X.-H., W.-D. Zhai, M.-H. Dai, C. Zhang, Y. Bai, Y. Xu, Q. Li and G.-Z. Wang, 2015. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations. Biogeosciences, 12(18): 5495-5514. DOI: 10.5194/bg-12-5495-2015.
  8. IPCC (Intergovernmental Panel on Climate Change), 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press. DOI:10.1017/9781009157896.
  9. Ishizaka, J., G. Kim, J.H. Lee, S.M. Liu, F. Yu and J. Zhang (Eds.), 2021. Oceanography of the Yellow Sea and East China Sea. PICES Sci. Rep. No. 62. North Pacific Marine Science Organization, Sidney, BC, Canada, 298 pp.
  10. Jang, S.-T., J.H. Lee, C.-H. Kim, C.J. Jang, and Y.S. Jang, 2011. Movement of cold water mass in the Northern East China Sea in summer. The Sea, 16(10): 1-13 (in Korean with English abstract). https://doi.org/10.7850/jkso.2011.16.1.001
  11. Kim, D., S.-H. Choi, J.H. Shim, K.-H. Kim and C.-H. Kim, 2013. Revising the seasonal variations of sea-air CO2 fluxes in the northern East China Sea. Terr. Atmos. Ocean. Sci., 24(3): 409-419. DOI: 10.3319/TAO.2012.12.06.01(Oc).
  12. Kim, D.-W., Y.-J. Park, J.-Y. Jeong and Y.-H. Jo, 2020. Estimation of hourly sea surface salinity in the East China Sea using geostationary ocean color imager measurements. Remote Sensing, 12(5): 755. DOI: 10.3390/rs12050755.
  13. Lee, I., D. Hahm, D. Shin, C.-S. Hong, S. Nam, G. Kim and T. Lee, 2021. Determination and uncertainty of spring net community production estimated from O2/Ar measurements in the northern East China Sea and southern Yellow Sea. Continent. Shelf Res., 230: 104570. https://doi.org/10.1016/j.csr.2021.104570
  14. Lee, K., 2001. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr., 46(6): 1287-1297. DOI: 10.4319/lo.2001.46.6.1287.
  15. Park, K.-A., J.-E. Park, B.-J. Choi, S.-H. Lee, E. Lee, D.-S. Byun and Y.-T. Kim, 2014. Schematic maps of ocean currents in the Yellow Sea and the East China Sea for science textbooks based on scientific knowledge from oceanic measurements. J. Korean Soc. Ocean., 22(4): 151-171. DOI: 10.7850/jkso.2017.22.4.151 (in Korean with English abstract).
  16. Pierrot, D., E. Lewis and D.W.R. Wallace, 2006. MS excel program developed for CO2 system calculations. Technical Report. Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., U.S. DOE, Oak Ridge, Tenn.
  17. Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, G.C. Johnson, S.A. Josey, A. Kostianoy, C. Mauritzen, D. Roemmich, L.D. Talley and F. Wang, 2013. Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al,), Cambridge University Press, 2013.
  18. Roobaert, A., G.G. Laruelle, P. Landschutzer, N. Gruber, L. Chou and P. Regnier, 2019. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochemical Cycles, 33(12): 1693-1714. DOI: 10.1029/2019GB006239.
  19. Song, J., B. Qu, X. Li, H. Yuan, N. Li and L. Duan, 2018. Carbon sinks/sources in the Yellow and East China Seas-Air-sea interface exchange, dissolution in seawater, and burial in sediments. Sci. China Earth Sci., 61. DOI: 10.1007/s11430-017-9213-6.
  20. Tak, Y.-J., Y.-K. Cho, J. Hwang and Y.-Y. Kim, 2022. Assessments of nitrate budgets in the Yellow Sea based on a 3D physical-biogeochemical coupled model. Front. Mar. Sci., 8: 785377. DOI: 10.3389/fmars.2021.785377.
  21. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, B. Hales, G. Friederich, F. Chavez, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, C. Sabine, M.Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, H.J.W. De Baar, Y. Nojiri, C.S. Wong, B. Delille and N.R. Bates, 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. Part II, 56(8-10): 554-577. DOI: 10.1016/j.dsr2.2008.12.009.
  22. Tan, S. and G. Shi, 2006. Satellite-derived primary productivity and its spatial and temporal variability in the China seas. J Geograph. Sci., 16(4): 447-457. https://doi.org/10.1007/s11442-006-0408-4
  23. Tseng, C.-M., P.-Y. Shen and K.-K. Liu, 2014. Synthesis of observed air-sea CO2 exchange fluxes in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxes. Biogeosciences, 11: 3855-3870. DOI: 10.5194/bg-11-3855-2014.
  24. Tsunogai, S., S. Watanabe and T. Sato, 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2? Tellus B., 51(3): 701-712. DOI: 10.1034/j.1600-0889.1999. t01-2-00010.x.
  25. Wang, S. and W. Zhai, 2021. Regional differences in seasonal variation of air-sea CO2 exchange in the Yellow Sea. Continent. Shelf Res., 218: 104393. DOI: 10.1016/j.csr.2021.104393.
  26. Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogra. Methods, 12: 351-362. DOI: 10.4319/lom.2014.12.351.
  27. Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2: 203-215. https://doi.org/10.1016/0304-4203(74)90015-2
  28. Xiong, T., Q. Wei, W. Zhai, C. Li, S. Wang, Y. Zhang, S. Liu and S. Yu, 2020. Comparing subsurface seasonal deoxygenation and acidification in the Yellow Sea and northern East China Sea along the north-to-south latitude gradient. Front. Mar. Sci., 7: 686. DOI: 10.3389/fmars.2020.00686.
  29. Xu, X., K. Zang, H. Zhao, N. Zheng, C. Huo and J. Wang, 2016. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes. J. Mar. Syst., 159: 89-99. DOI: 10.1016/j.jmarsys.2016.03.009.
  30. Xue, L., L. Zhang, W.-J. Cai and L.-Q. Jiang, 2011. Air-sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Continent. Shelf Res., 31: 1904-1914. DOI: 10.1016/j.csr.2011.09.002.
  31. Xue, L., M. Xue, L. Zhang, T. Sun, Z. Guo and J. Wang, 2012. Surface partial pressure of CO and air-sea exchange in the northern Yellow Sea. J. Mar. Syst., 105-108: 194-206. DOI: 10.1016/j.jmarsys.2012.08.006.
  32. Yang, M., T.J. Smyth, V. Kitidis, I.J. Brown, C. Wohl, M.J. Yelland and T.G. Bell, 2021. Natural variability in air-sea gas transfer efficiency of CO. Sci. Rep., 11: 13584. DOI: 10.1038/s41598-021-92947-w.
  33. Yu, S., T. Xiong and W. Zhai, 2022. Quasi-synchronous accumulation of apparent oxygen utilization and inorganic carbon in the South Yellow Sea Cold Water Mass form spring to autumn: the acidification effect and roles of community metabolic processes, water mixing, and spring thermal state. Front. Mar. Sci., 9: 858871. DOI: 10.3389/fmars.2022.858871.