DOI QR코드

DOI QR Code

Analysis of Blasting Vibration at the Irregular Layered Structure Ground

불규칙한 층상구조 지반에서의 발파진동 분석

  • Received : 2016.04.21
  • Accepted : 2016.09.05
  • Published : 2016.10.01

Abstract

By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.

측상구조를 갖는 다변성 지반에서 시행된 3개소 24회의 시험발파로부터 획득한 발파진동 데이터를 지층단면도와 연계하여 제어가 불가능한 지반 특성으로 인한 발파진동 영향을 분석하였다. 화산쇄설층인 클링커층이 불규칙하게 반복되는 층상구조에 대한 발파공학적 경험과 자료의 부족 등으로 충분한 검토가 이루어지지 않은 비효율적인 발파가 이루어지고 있다. 시험발파 지역 내 클링커층의 N값은 매우 다양한 범위로 나타나 정량화하기 매우 어렵다. 그리고 현장의 전체 발파진동 추정식(SRSD)은 감쇠지수 n의 절대값이 설계지침보다 작게 나타나 발파진동이 멀리 전파되었으며, 발파진동상수 K와 감쇠지수 n이 상대적으로 매우 작은 값을 보인 시험발파. 1의 진동특성을 지층단면도로부터 유추한 결과, 연암층 하부에 접한 클링커층 인근까지 발파천공이 진행되어 발파 시 하부에 넓게 분포하고 있는 클링커층으로 폭발 가스압이 손실되었을 것으로 판단된다. 이로 인해 암파쇄량도 절반정도로 감소하였다. 그리고 현장의 주주파수 대역은 일반적인 구조물의 고유 주파수 대역과 유사한 저주파수 대역으로 확인되었다.

Keywords

References

  1. Choi, B. H. and Ryu, C. H. (2012). "Consideration on the relation between vibration level and peak particle velocity in regulation of ground vibration." J. of Korean Society of Explosives & Blasting Engineering, Vol. 30, No. 2, pp. 1-8 (in Korean).
  2. Choi, B. H. and Ryu, C. H. (2015). "Measurements and data processing for blast vibrations and air-blasts." J. of Korean Society of Explosives & Blasting Engineering, Vol. 33, No. 3, pp. 29-50 (in Korean).
  3. Dowding, C. H. (1996). Construction vibrations, Prentice Hall Inc., Upper Saddle River, NJ 07458, US, p. 84.
  4. Inman, D. J. (1996). Engineering vibration, Prentice Hall Inc., Upper Saddle River, NJ 07458, US, pp. 69-70.
  5. ISEE, 1998, Blaster's Handbook, 17th ed., International Society of Explosives Engineers, Cleveland, Ohio, USA, p. 594.
  6. Kang, C. W. (2014). Blasting Engineering A to Z 3th, Goomibook, pp. 403-425 (in Korean).
  7. Kim, J. H. (2007). A study on the mechanical characteristics and the strength in pyoseonri basalt, Master's thesis, Jeju National University, p. 3 (in Korean).
  8. Koh, G. W. (1997). Characteristics of the groundwater and hydrogeology implications of the Seogwipo formation in Cheju island, Ph D. dissertation, Pusan National University, pp. 39-61 (in Korean).
  9. Lambe, T. W. and Whitman, R. V. (1979). Soil Mechanics SI Version, J, Willey & Sons, New York, pp. 97-136.
  10. Le Maitre, R. W. (1984). "A proposal by the IUGS subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram." Australian J. of Earth Sci., Vol. 31, pp. 243-255. https://doi.org/10.1080/08120098408729295
  11. Lee, D. W. and Kim, S. H. (2016). "Development of blast vibration equation considering the polymorphic characteristics of basaltic ground." Proc. of 18th Int. Science Academy, Geological and Environmental Engineering, WASET, London, U.K., pp. 979-982.
  12. MOCT (Ministry of Construction and Transportation of Korea). (2006). Blasting design and construction guidelines to road construction. No. 11-1500000-001841-01 (in Korean).
  13. Nam, J. M., Ko, H. S. and Oh, D. I. (2003). "A study on strength characteristics of Jeju - island's Scoria (Song-E)." J. of the Korean Society of Road Engineers, Vol. 5, No. 4, pp. 37-47 (in Korean).
  14. Park, G. H., Cho, D. L. and Kim, J. C. (2000). Geological Report of Moseulpo-Hanlim Sheet, Korea Institute of Geology, Mining and Materials (in Korean).
  15. Persson, P. A., Holmberg, R. and Lee, J. (1994). Rock blasting and explosives engineering, CRC Press, pp. 337-338.
  16. Siskind, D. E. (2000). Vibrations from Blasting, ISEE, Cleveland, OH USA, pp. 14-15, pp. 17-28.
  17. Siskind, D. E., Stagg, M. S., Kopp, J. W. and Dowding, C. H. (1980). Structure Response and Damage Produced by Ground Vibration From Surface Mine Blasting, Report of Investigations 8507 United States. Bureau of Mines (USBM RI 8507).
  18. Snodgrass, J. J. and Siskind, D. E. (1974). Vibrations from Underground Blasting, Report of Investigations 7937 United States. Bureau of Mines (USBM RI 7937), p. 31.
  19. Yang, H. S., Kim, N. S., Jang, H. D., Kim, W. B., Ko, Y. H., Kim, S. J., Kim, J. G. and Moon, H. S. (2011). "Study on optimization of blast design for improving fragmentation in Jeju basalt rock area." J. of Korean Society of Explosives & Blasting Engineering, Vol. 29, No. 2, pp. 89-99 (in Korean).
  20. Youn, J. S. (1995). "A study on parasitic cones of the northern parts of Cheju island, Korea." Cheju National University, Marine Science Institute, Vol. 19, pp. 25-38 (in Korean).