Browse > Article
http://dx.doi.org/10.7850/jkso.2022.27.4.194

Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea  

KIM, SO-YUN (Department of Oceanography, Pusan National University)
LEE, TONGSUP (Department of Oceanography, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.27, no.4, 2022 , pp. 194-210 More about this Journal
Abstract
The monthly inventory of dissolved inorganic carbon (CT) and its fluxes were simulated using a box-model for the southeastern Yellow Sea, bordering the northern East China Sea. The monthly CT data was constructed by combining the observed data representing four seasons with the data adopted from the recent publications. A 2-box-model of the surface and deep layers was used, assuming that the annual CT inventory was at the steady state and its fluctuations due to the advection in the surface box were negligible. Results of the simulation point out that the monthly CT inventory variation between the surface and deep box was driven primarily by the mixing flux due to the variation of the mixed layer depth, on the scale of -40~35 mol C m-2 month-1. The air to sea CO2 flux was about 2 mol C m-2 yr-1 and was lower than 1/100 of the mixing flux. The biological pump flux estimated magnitude, in the range of 4-5 mol C m-2 yr-1, is about half the in situ measurement value reported. The CT inventory of the water column was maximum in April, when mixing by cooling ceases, and decreases slightly throughout the stratified period. Therefore, the total CT inventory is larger in the stratified period than that of the mixing period. In order to maintain a steady state, 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1), the difference between the maximum and minimum monthly CT inventory, should be transported out to the East China Sea. Extrapolating this flux over the entire southern Yellow Sea boundary yields 4 × 109 g C yr-1. Conceptually this flux is equivalent to the proposed continental shelf pump. Since this flux must go through the vast shelf area of the East China Sea before it joins the open Pacific waters the actual contribution as a continental shelf pump would be significantly lower than reported value. Although errors accompanied the simple box model simulation imposed by the paucity of data and assumptions are considerably large, nevertheless it was possible to constrain the relative contribution among the major fluxes and their range that caused the CT inventory variations, and was able to suggest recommendations for the future studies.
Keywords
Dissolved inorganic carbon; Inventory; flux; Box model; Yellow Sea;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park, K.-A., J.-E. Park, B.-J. Choi, S.-H. Lee, E. Lee, D.-S. Byun and Y.-T. Kim, 2014. Schematic maps of ocean currents in the Yellow Sea and the East China Sea for science textbooks based on scientific knowledge from oceanic measurements. J. Korean Soc. Ocean., 22(4): 151-171. DOI: 10.7850/jkso.2017.22.4.151 (in Korean with English abstract).   DOI
2 Pierrot, D., E. Lewis and D.W.R. Wallace, 2006. MS excel program developed for CO2 system calculations. Technical Report. Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., U.S. DOE, Oak Ridge, Tenn.
3 Song, J., B. Qu, X. Li, H. Yuan, N. Li and L. Duan, 2018. Carbon sinks/sources in the Yellow and East China Seas-Air-sea interface exchange, dissolution in seawater, and burial in sediments. Sci. China Earth Sci., 61. DOI: 10.1007/s11430-017-9213-6.   DOI
4 Tan, S. and G. Shi, 2006. Satellite-derived primary productivity and its spatial and temporal variability in the China seas. J Geograph. Sci., 16(4): 447-457.   DOI
5 Wang, S. and W. Zhai, 2021. Regional differences in seasonal variation of air-sea CO2 exchange in the Yellow Sea. Continent. Shelf Res., 218: 104393. DOI: 10.1016/j.csr.2021.104393.   DOI
6 Xiong, T., Q. Wei, W. Zhai, C. Li, S. Wang, Y. Zhang, S. Liu and S. Yu, 2020. Comparing subsurface seasonal deoxygenation and acidification in the Yellow Sea and northern East China Sea along the north-to-south latitude gradient. Front. Mar. Sci., 7: 686. DOI: 10.3389/fmars.2020.00686.   DOI
7 Lee, K., 2001. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr., 46(6): 1287-1297. DOI: 10.4319/lo.2001.46.6.1287.   DOI
8 Lee, I., D. Hahm, D. Shin, C.-S. Hong, S. Nam, G. Kim and T. Lee, 2021. Determination and uncertainty of spring net community production estimated from O2/Ar measurements in the northern East China Sea and southern Yellow Sea. Continent. Shelf Res., 230: 104570.   DOI
9 Yang, M., T.J. Smyth, V. Kitidis, I.J. Brown, C. Wohl, M.J. Yelland and T.G. Bell, 2021. Natural variability in air-sea gas transfer efficiency of CO. Sci. Rep., 11: 13584. DOI: 10.1038/s41598-021-92947-w.   DOI
10 Yu, S., T. Xiong and W. Zhai, 2022. Quasi-synchronous accumulation of apparent oxygen utilization and inorganic carbon in the South Yellow Sea Cold Water Mass form spring to autumn: the acidification effect and roles of community metabolic processes, water mixing, and spring thermal state. Front. Mar. Sci., 9: 858871. DOI: 10.3389/fmars.2022.858871.   DOI
11 Xue, L., L. Zhang, W.-J. Cai and L.-Q. Jiang, 2011. Air-sea CO2 fluxes in the southern Yellow Sea: An examination of the continental shelf pump hypothesis. Continent. Shelf Res., 31: 1904-1914. DOI: 10.1016/j.csr.2011.09.002.   DOI
12 Guo, X.-H., W.-D. Zhai, M.-H. Dai, C. Zhang, Y. Bai, Y. Xu, Q. Li and G.-Z. Wang, 2015. Air-sea CO2 fluxes in the East China Sea based on multiple-year underway observations. Biogeosciences, 12(18): 5495-5514. DOI: 10.5194/bg-12-5495-2015.   DOI
13 Xue, L., M. Xue, L. Zhang, T. Sun, Z. Guo and J. Wang, 2012. Surface partial pressure of CO and air-sea exchange in the northern Yellow Sea. J. Mar. Syst., 105-108: 194-206. DOI: 10.1016/j.jmarsys.2012.08.006.   DOI
14 Rhein, M., S.R. Rintoul, S. Aoki, E. Campos, D. Chambers, R.A. Feely, S. Gulev, G.C. Johnson, S.A. Josey, A. Kostianoy, C. Mauritzen, D. Roemmich, L.D. Talley and F. Wang, 2013. Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al,), Cambridge University Press, 2013.
15 Chen, C.-T.A., T.-H. Huang, Y.-C. Chen, Y. Ba, X. He and Y. Kang, 2013. Air-sea exchanges of CO2 in the world's coastal seas. Biogeosciences, 10(10): 6509-6544. DOI: 10.5194/bg-10-6509-2013.   DOI
16 de Boyer Montegut, C., G. Madec, A.S. Fischer, A. Lazar and D. Iudicone, 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 199: C12003. DOI: 10.1029/2004JC002378.   DOI
17 Bakker, D.C.E., B. Pfeil, C.S. Landa, N. Metzl, K.M. O'Brien, A. Olsen, K. Smith, C. Cosca, S. Harasawa, S.D. Jones, S. Nakaoka, Y. Nojiri, U. Schuster, T. Steinhoff, C. Sweeney, T. Takahashi, B. Tilbrook, C. Wada, R. Wanninkhof, S.R. Alin, C.F. Balestrini, L. Barbero, N.R. Bates, A.A. Bianchi, F. Bonou, J. Boutin, Y. Bozec, E.F. Burger, W.J. Cai, R.D. Castle, L. Chen, M. Chierici, C. Kim, W. Evans, C. Featherstone, R.A. Feely, A. Fransson, C. Goyet, N. Greenwood, L. Gregor, S. Hankin, N.J. Hardman-Mountford, J. Harlay, J. Hauck, M. Hoppema, M.P. Humphreys, C.W. Hunt, B. Huss, J.S.P. Ibanhez, T. Johannessen, R. Keeling, V. Kitidis, A. Kortzinger, A. Kozyr, E. Krasakopoulou, A. Kuwata, P. Landschutzer, S.K. Lauvset, N. Lefevre, C.L. Monaco, A. Manke, J.T. Mathis, L. Merlivat, F.J. Millero, P.M.S. Monteiro, D.R. Munro, A. Murata, T. Newberger, A.M. Omar, T. Ono, K. Paterson, D. Pearce, D. Pierrot, L.L. Robbins, S. Saito, J. Salisbury, R. Schlitzer, B. Schneider, R. Schweitzer, R. Sieger, I. Skjelvan, K.F. Sullivan, S.C. Sutherland, A.J. Sutton, K. Tadokoro, M. Telszewski, M. Tuma, S.M.A.C. van Heuven, D. Vandemark, B. Ward, A.J. Watson and S. Xu, 2016. A multi-decade record of high quality fCO2data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2): 383-413. DOI: 10.5194/essd-8-383-2016.   DOI
18 Anderson, L.A. and J.L. Sarmiento, 1994. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles, 8(1): 65-80.   DOI
19 Choi, Y., D. Kim, S. Cho and T.-W. Kim, 2019. Southeastern Yellow Sea as a sink for atmospheric carbon dioxide. Mar. Poll. Bull., 149: 110550. DOI: 10.1016/j.marpolbul.2019.110550.   DOI
20 Ishizaka, J., G. Kim, J.H. Lee, S.M. Liu, F. Yu and J. Zhang (Eds.), 2021. Oceanography of the Yellow Sea and East China Sea. PICES Sci. Rep. No. 62. North Pacific Marine Science Organization, Sidney, BC, Canada, 298 pp.
21 Jang, S.-T., J.H. Lee, C.-H. Kim, C.J. Jang, and Y.S. Jang, 2011. Movement of cold water mass in the Northern East China Sea in summer. The Sea, 16(10): 1-13 (in Korean with English abstract).   DOI
22 Kim, D., S.-H. Choi, J.H. Shim, K.-H. Kim and C.-H. Kim, 2013. Revising the seasonal variations of sea-air CO2 fluxes in the northern East China Sea. Terr. Atmos. Ocean. Sci., 24(3): 409-419. DOI: 10.3319/TAO.2012.12.06.01(Oc).   DOI
23 Kim, D.-W., Y.-J. Park, J.-Y. Jeong and Y.-H. Jo, 2020. Estimation of hourly sea surface salinity in the East China Sea using geostationary ocean color imager measurements. Remote Sensing, 12(5): 755. DOI: 10.3390/rs12050755.   DOI
24 Tak, Y.-J., Y.-K. Cho, J. Hwang and Y.-Y. Kim, 2022. Assessments of nitrate budgets in the Yellow Sea based on a 3D physical-biogeochemical coupled model. Front. Mar. Sci., 8: 785377. DOI: 10.3389/fmars.2021.785377.   DOI
25 Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, B. Hales, G. Friederich, F. Chavez, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, C. Sabine, M.Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, H.J.W. De Baar, Y. Nojiri, C.S. Wong, B. Delille and N.R. Bates, 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. Part II, 56(8-10): 554-577. DOI: 10.1016/j.dsr2.2008.12.009.   DOI
26 Tseng, C.-M., P.-Y. Shen and K.-K. Liu, 2014. Synthesis of observed air-sea CO2 exchange fluxes in the river-dominated East China Sea and improved estimates of annual and seasonal net mean fluxes. Biogeosciences, 11: 3855-3870. DOI: 10.5194/bg-11-3855-2014.   DOI
27 Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem., 2: 203-215.   DOI
28 Tsunogai, S., S. Watanabe and T. Sato, 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2? Tellus B., 51(3): 701-712. DOI: 10.1034/j.1600-0889.1999. t01-2-00010.x.   DOI
29 Roobaert, A., G.G. Laruelle, P. Landschutzer, N. Gruber, L. Chou and P. Regnier, 2019. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochemical Cycles, 33(12): 1693-1714. DOI: 10.1029/2019GB006239.   DOI
30 Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogra. Methods, 12: 351-362. DOI: 10.4319/lom.2014.12.351.   DOI
31 Xu, X., K. Zang, H. Zhao, N. Zheng, C. Huo and J. Wang, 2016. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes. J. Mar. Syst., 159: 89-99. DOI: 10.1016/j.jmarsys.2016.03.009.   DOI
32 Global Carbon Project, 2022. Carbon budget and trends 2021.
33 IPCC (Intergovernmental Panel on Climate Change), 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press. DOI:10.1017/9781009157896.   DOI