• Title/Summary/Keyword: HT1080 cells

Search Result 107, Processing Time 0.031 seconds

Free Radical Scavenging, Cytotoxic Effects, and Flavonoid Content of Fractions from Leaves of Lycopus lucidus Turcz. (택란 잎 추출물의 라디칼 소거활성과 세포독성효과 및 플라보노이드 함량)

  • Na, Eun;Lee, Jung Woo;Lim, Sun Young
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.337-344
    • /
    • 2019
  • The free radical scavenging, cytotoxic effects, and flavonoid content of fractions from Lycopus lucidus Turcz leaves were here investigated. The flavonoid contents of 85% methanol (MeOH) and n-butanol (BuOH) fractions of the leaves were 41.5 mg/g and 77.2 mg/g, respectively. In DPPH and ABTs+ assays, 85% MeOH and n-BuOH fractions from the L. lucidus Turcz leaves had a greater scavenging effect (p<0.05). The n-BuOH fraction (0.5 mg/ml concentration) had scavenging effects of 88% and 92% in the DPPH and ABTs+ assays, respectively (p<0.05). Cell viability tests showed that treatment with L. lucidus Turcz leaf fractions caused cytotoxicity in the growth of AGS, HT-29, and HT-1080 cancer cells. Of the different fractions, the 85% MeOH sample displayed the highest cytotoxic activity; the $IC_{50}$ values of this fraction against AGS, HT-1080, and HT-29 cancer cells were 0.03 mg/ml, 0.14 mg/ml, and 0.16 mg/ml, respectively. These biological results indicate that the n-BuOH fraction was more effective in anti-oxidant activity while the 85% MeOH fraction was stronger in cytotoxic effects, and they suggest that these two fractions from L. lucidus Turcz leaves may contain valuable bioactive compounds, such as flavonoids.

Effects of Seaweeds on Matrix Metalloproteinases Derived from Normal Human Dermal Fibroblasts and Human Fibrosarcoma Cells (사람피부섬유아세포 및 섬유아육종세포로부터 유래된 기질금속단백질효소에 대한 해조류의 효능)

  • Park, In-Hwan;Lee, Sang-Hoon;Kim, Se-Kwon;Ngo, Dai-Nghiep;Jeon, You-Jin;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1501-1510
    • /
    • 2011
  • In recent years novel potential pharmocological candidates have been looked for in animal, seaweed, sponge, fungi and marine bacteria resources. In this study, matrix metalloproteinases (MMPs) that play an important role in metastasis, arthritis, chronic inflammation and wrinkle formation were used as target enzymes to screen therapeutic agents. The inhibitory effects of several marine algae including green algae (5 species), red algae (18 species) and brown algae (4 species) methanolic extracts on MMPs were investigated in human dermal fibroblasts and human fibrosarcoma cell line (HT1080 cells) using gelatin zymography. In human dermal fibroblasts, the inhibition of MMP-2 was observed in Laurencia okamurae, Polysiphonia japonica, Grateloupia lanceolate and Sinkoraena lancifolia of red algae. In contrast, MMP-2 activation was enhanced in Enteromorpha compressa and E. linza of green algae, and Peltaronia bighamiae and Sargassum thunbergii of brown algae. In human fibrosarcoma cells, MMP-9 activation was decreased in the presence of S. thunbergii of brown algae, Polysiphonia japonica in red algae and E. compressa and E. linza of green algae. The interesting finding is that E. compressa and E. linza of green algae, and S. thunbergii of brown algae exhibited a positive effect on MMP-2 in normal cells, but a negative effect on MMP-9 in cancer cell lines. These results suggest that E. compressa and E. linza of green algae, and S. thunbergii of brown algae contain potential therapeutic ingredients for cancer treatment.

Inhibition of MMP-2 and MMP-9 Activities by Limonium tetragonum Extract

  • Bae, Min-Joo;Karadeniz, Fatih;Lee, Seul-Gi;Seo, Youngwan;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that take important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Natural products are on the rise for their potential to provide remarkable health benefits. In this context, halophytes have been of interest in the nutraceutical field with reported instances of isolation of bioactive compounds. In this study, Limonium tetragonum, an edible halophyte, was studied for its ability to inhibit MMP-2 and -9 using HT1080 fibrosarcoma cells. Results showed that L. tetragonum extract was able to inhibit the enzymatic activity and mRNA expression of MMP-2 and -9 according to gelatin zymography and RT-PCR assays, respectively, but it was not able to significantly change the MMP pathway related factors such as tissue inhibitors of metalloproteinases. Also, Mitogen-activated protein kinases pathway-related protein levels and their phosphorylation were assayed. While the phosphorylated p38 levels were decreased, extracellular signal-regulated kinase and c-Jun N-terminal kinase were not affected by L. tetragonum treatment. In conclusion, it was suggested that L. tetragonum contains substances acting as MMP inhibitors on enzymatic activity rather than intracellular pathway intervention, which could be useful for further utilization of L. tetragonum as a source for anti-MMP agents.

Antioxidant Activity and Inhibition of MMP-9 by Isorhamnetin and Quercetin 3-O-$\beta$-D-Glucopyranosides Isolated from Salicornia herbacea in HT1080 Cells

  • Kong, Chang-Suk;Kim, You-Ah;Kim, Moon-Moo;Park, Jin-Sook;Kim, Se-Kwon;Lee, Burm-Jong;Nam, Taek-Jeong;Seo, Young-Wan
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.983-989
    • /
    • 2008
  • Two flavonoids, isorhamnetin 3-O-$\beta$-D-glucopyranoside (1) and quercetin 3-O-$\beta$-D-glucopyranoside (2), from slander glasswort (Salicornia herbacea, Korean name hamcho) were isolated. Antioxidative and matrix metalloproteinase-9(MMP-9) inhibitory effects of these compounds were investigated in HT 1080 cell lines. These compounds suppressed the electron spin resonance (ESR) signal intensity on generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in a free-cellular system. Their scavenging effects on generation of intercellular reactive oxygen species (ROS) also exhibited similar trends with DPPH radical in the free cellular system. Also, a control group combined only with Fe(II)-$H_{2}O_2$ resulted in DNA apoptosis by oxidative stress, whereas treatments with these compounds suppressed radical-mediated DNA damage. Intracellular glutathione (GSH) levels were slightly increased in the presence of compound 1 and 2. Moreover, these compounds led to the reduction of the expression levels of MMP-9 without cytotoxic influence. These results suggest that these compounds have a potential as a valuable natural antioxidant and MMP inhibitor related to oxidative stress. Therefore, these compounds not only can be developed as a candidate for a therapeutic potential but also a source for use as ingredients of health foods or functional foods to prevent metastasis involving MMP-9, closely related to ROS.

Anti-tumor activity of Korean Oldenlandiae Herba and Radix (국내산 백화사설초 전초와 뿌리의 항암효과)

  • Lee, Hyo-Jeong;Lee, Eun-Ok;Rhee, Yun-Hee;Kim, Kwan-Hyun;Lee, Jae-Ho;Baek, Nam-In;Ra, Jeong-Chan;Kim, Sung-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.110-115
    • /
    • 2004
  • For the evaluation of anti-tumor activity of Korean Oldenlandia Herb (KOH) and Radix (KOR), our experiment was performed with methanol extracts of KOH and KOR. They did not shown any cytotoxicity against HT1080 cell lines. However, they effectively showed anti-metastatic activity through inhibition of the adhesion of HT1080 cells to gelatin, downregulated the expression of MMP2 and uPA and upregulated the expression of TIMP2. They also inhibited tube formation of HUVECs induced by bFGF. However, they did not affect DNA topoisomerase I activity. Simiarly, the T/Cs % in KOH and KOR treated mice were increased 134.9% and 171 %, respectively at 2500 mg/kg. These results suggest that KOH and KOR exert anti-tumor activity via anti-metastatic and anti-angiogenic activities. The further study for isolation of effective compounds and its exact mechanism and comparative study with Chinese Oldenlandia Herba will be required.

Fucoxanthin derivatives from Sargassum siliquastrum inhibit matrix metalloproteinases by suppressing NF-κB and MAPKs in human fibrosarcoma cells

  • Nguyen, Van-Tinh;Qian, Zhong-Ji;Lee, Bonggi;Heo, Soo-Jin;Kim, Kil-Nam;Jeon, You-Jin;Park, Won Sun;Choi, Il-Whan;Jang, Chul Ho;Ko, Seok-Chun;Park, Sun-Joo;Kim, Yong-Tae;Kim, GeunHyung;Lee, Dae-Sung;Yim, Mi-Jin;Je, Jae-Young;Jung, Won-Kyo
    • ALGAE
    • /
    • v.29 no.4
    • /
    • pp.355-366
    • /
    • 2014
  • Fucoxanthin is known to be an effective cell proliferation inhibitor with anti-tumor and anti-angiogenic activities. However, there is a lack of data regarding the biological effects of cis isomers of fucoxanthin. To assess the potential therapeutic properties of 9'-cis-(6'R) fucoxanthin (FcA), and 13-cis and 13'-cis-(6'R) fucoxanthin complex (FcB) isolated from Sarggassum siliquastrum, we investigated their inhibitory effects on matrix metalloproteinases (MMPs) in phorbol 12-myristate 13-acetate (PMA)-induced human fibrosarcoma (HT1080) cells. FcA and FcB reduced MMP-2 and MMP-9 protein and mRNA levels, as well as the migration of these cells, in a dose-dependent manner. Additionally, FcA and FcB increased levels of MMPs inhibition factors such as tissue inhibitor of metalloproteinase-1. FcA and FcB significantly inhibited the transcriptional activity of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) and by inhibiting c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. Our results demonstrate that suppression of the NF-${\kappa}B$, JNK, and p38 signaling pathways may inhibit PMA-induced MMP-2 and MMP-9 activity. Therefore, FcA and FcB may be useful in noninvasive therapeutic strategies against fibrosarcoma metastasis.

Antioxidant, Antiinflamatory, and Antiproliferative Activities of Strawberry Extracts

  • Hong, Ji-Young;Song, Su-Hyun;Park, Hyen-Joo;Cho, Yong-Jin;Pyee, Jae-Ho;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.286-292
    • /
    • 2008
  • Strawberry is widely consumed in diet and has been attracted much attention due to its potential for human health benefits. Strawberry contains a diverse range of phytochemicals but the biological activities with molecular mechanisms are poorly elucidated yet. In this study, the effects of the extracts of strawberry (Maehyang cultivar) on antioxidant, antiinflammatory, and antiproliferative potential against various cancer cells were investigated. The strawberry extracts (SE) of Maehyang cultivar showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities. In addition, SE inhibited the growth of human colon (HCT-116), lung (A549), stomach (SNU-638) and fibrosarcoma (HT-1080) cancer cells. The strawberry extracts also exhibited the inhibitory effect on lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and suppressed LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in mouse macrophage RAW 264.7 cells. These findings suggest that the strawberry extracts (Maehyang cultivar) might have antioxidant, antiinflammotry, and anticancer activities.

Effect of Radiation Dosage Changes on the Cell Viability and the Apoptosis Induction on Normal and Tumorigenic Cells (방사선의 선량변화가 수종의 정상세포와 종양세포주의 세포활성도와 apoptosis 유발에 미치는 영향)

  • Park In-Woo;Lee Sam-Sun;Heo Min-Suk;Choi Soon-Chul
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.435-449
    • /
    • 1999
  • Purpose : The study was aimed to detect the differences in the cell viability and the apoptosis induction after irradiation on normal and tumorigenic cells. Materials and Methods : The study. that was generated for two human normal cells(RHEK, HGF-l) and two human tumor cells(KB. HT-1080). was tested using MTT assay at 1 day and 3 day after irradiation and TUNEL assay under confocal laser scanning microscope at 1 day after irradiation. Single irradiation of 0.5. 1, 2. 4. and 8Gy were applied to the cells. The two fractions of 1. 2. 4. and 8Gy were separated with a 4-hour time interval. The irradiation was done with 5.38Gy/min dose rate using Cs-137 irradiator at room temperature. Results and Conclusions : 1. In 3-day group. the cell viability of HGF-1 cell was significantly decreased at 2. 4 and 8Gy irradiation, the cell viability of KB cell was significantly decreased at 8Gy irradiation and the cell viability of HT-I080 cell was significantly decreased at 4 and 8Gy irradiation. 2. There was significant difference between RHEK and KB cell line in the cell viability of 3-day group at 8Gy irradiation. There was significant difference between RHEK and HGF-1 cell line in the cell viability of 3-day group at 4 and 8Gy irradiation. 3. There was a significantly decreased cell viability in 3-day group than those in 1-day group at 2. 4 and 8Gy on HGF-1 cell. at 4 and 8Gy on HT-I080 cell. at 8Gy on KB cell. 4. We could detect DNA fragmented cells only on KB cell. Number of apoptotic cells of KB cell was significantly increased at 4 and 8Gy irradiation. However, there was no correlation between cell viability and apoptosis. 5. On all 4 cell lines, there were no differences between single and split irradiation method in cell viability and apoptosis.

  • PDF

Cellular Imaging of Gold Nanoparticles Using a Compact Soft X-Ray Microscope (연 X-선 현미경을 이용한 금 나노입자 세포영상)

  • Kwon, Young-Man;Kim, Han-Kyong;Kim, Kyong-Woo;Kim, Sun-Hee;Yin, Hong-Hua;Chon, Kwon-Su;Kang, Sung-Hoon;Park, Seong-Hoon;Juhng, Seon-Kwan;Yoon, Kwon-Ha
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • A compact soft x-ray microscope operated in the 'water window' wavelength region ($2.3{\sim}4.4nm$) was used for observing cells with nano-scale spatial resolution. To obtain cellular imaging captured with colloidal gold nanoparticles using a compact soft x-ray microscope. The colloidal gold nanoparticles showed higher contrast and lower transmission more than 7 times than that of cellular protein on the soft x-ray wavelength region. The structure and thickness of the cell membrane of the Coscinodiscus oculoides (diatome) and red blood cells were seen clearly. The gold nanoparticles within the HT1080 and MDA-MB 231 cells were seen clearly on the soft x-ray microscopy. The gold nanoparticles were aggregated within vesicles by endocytosis.

In vitro Inhibitory Effect of Aged Black Garlic Extract with Antioxidant Activity on MMP-2 and MMP-9 Related to Metastasis (In vitro에서 항산화 효능이 있는 흑마늘 추출물의 MMP-2 및 MMP-9에 대한 활성 억제효과)

  • Lee, Soo-Jin;Nam, Hyang;Kim, Moon-Moo;Jang, Ho-Jung;Park, Jung-Ae;Kim, Byung-Woo;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.760-767
    • /
    • 2010
  • The oxidative damage of lipids, protein, and DNA is known to be involved in not only chronic inflammations such as arthritis, hepatitis, nephritis, gastritis, colitis, and periodontitis but also metastasis. It has given impetus to searching for natural compounds without toxicity, which prevent the development of these diseases. The direct scavenging effects of aged black garlic extract (ABGE) were evaluated in vitro on DPPH radical, hydroxyl radical, hydrogen peroxide, and genomic DNA damage related to oxidative stress. Furthermore, its antioxidant effect on lipid peroxidation was investigated in human fibrosarcoma cells (HT1080), which were exposed to the hydroxyl radical generated by the Fenton reaction. It was observed that ABGE exhibited a greater inhibitory effect on hydrogen peroxide than other reactive oxygen species, and also blocked DNA oxidation and lipid peroxidation induced by the hydroxyl radical. The oxidative stress in live cells was also inhibited in the presence of ABGE. In addition, its inhibitory effects on the activity and expression of MMP-2 and -9 related to metastasis were determined using gelatin zymography and western blot. The data showed that it inhibited MMP-2 and -9 in PMA-stimulated HT1080 cells. Therefore, these results suggest that ABGE show potential as an excellent agent for prevention of metastasis related to oxidative stress.