• Title/Summary/Keyword: HRSEM

Search Result 8, Processing Time 0.009 seconds

The use of HRSEM to characterize new and aged membranes in drinking water production

  • Wyart, Y.;Nitsche, S.;Chaudanson, D.;Glucina, K.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.251-266
    • /
    • 2011
  • This work deals with the use of High Resolution Scanning Electron Microscopy (HRSEM) to verify ultrafiltration membrane selectivity at the end of the production line as well as membrane ageing. The first part of this work is focused on new membranes. It is shown that it is better to use sputtering metallization than vacuum deposition, as this latter technique entails thermal damage to the skin layer. Moreover, the impact of the metallization layer on the determination of the membrane pore size is studied and it is observed that no impact of the metallization step can be clearly defined for a metallization layer ranging from 3 to 12 nm. For example, an average pore size of 16.9 nm and a recovery rate of 6.5 % are observed for a 150 kDa cellulose acetate membrane. These results are in agreement with those given by the manufacturer: pore size ranging from 10 to 15 nm and recovery rate ranging from 5 to 10 %. The second part of this work focuses on the study of membrane ageing. A PVDF hollow fibre membrane is studied. It is shown that a 65 % decrease in the permeate flux can be linked to a decrease in the number of pores at the surface of the membrane and a decrease in the recovery rate. In conclusion, a mapping of the pores is performed for several new hollow fibre membranes used to produce drinking water, made of different materials, with different geometries and molecular weight cut-off. These results provide reference data that will help better understand the phenomena of membrane fouling and membrane ageing.

Chloroplasts morphology investigation with diverse microscopy approaches and inter-specific variation in Laurencia species (Rhodophyta)

  • Paradas, Wladimir Costa;Andrade, Leonardo Rodrigues;Salgado, Leonardo Tavares;Collado-Vides, Ligia;Pereira, Renato Crespo;Amado-Filho, Gilberto Menezes
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.291-301
    • /
    • 2015
  • The present study described with different microscopy approaches chloroplasts lobes in Laurencia sensu latu (Rhodophyta) species and found inter-specific differences among them. Chloroplasts were investigated using confocal laser scanning microscopy (LSM), transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HRSEM). Using and TEM and HRSEM images we distinguished chloroplasts with lobes than chloroplasts without lobes in Yuzurua poiteaui var. gemmifera (Harvey) M. J. Wynne and Laurencia dendroidea J. Agardh cortical cells. The LSM images showed chloroplasts lobes (CLs) with different morphologies, varying from thicker and longer undulated projections in Y. poiteaui var. and L. dendroidea to very small and thin tubules as in Laurencia translucida Fujii & Cordeiro-Marino. The diameter and length of CLs from Y. poiteaui var. and L. dendroidea were significantly higher than L. translucida CLs (p < 0.01). Based on LSM observations, we suggest that lobes morphology has a taxonomic validity only to characterize L. translucida species.

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A;Abdulkareem, AS;Kovo, AS;Abubakre, OK;Tijani, JO;Kariim, I
    • Carbon letters
    • /
    • v.21
    • /
    • pp.33-50
    • /
    • 2017
  • In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

Synthesis of $CuInGaSe_2$ Nanoparticles for Absorber Layer of Solar Cell (태양전지 광흡수층용 $CuInGaSe_2$ 나노입자 합성)

  • 김기현;전영갑;윤경훈;박병옥
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.231-231
    • /
    • 2003
  • I-III-Ⅵ족 CuInGaSe$_2$(CIGS)계 화합물 태양전지는 1 eV 이상의 직접 천이형 에너지 밴드갭을 가지며, 전기 광학적으로 매우 안정하여 태양전지의 광흡수층으로 매우 이상적이다. CIGS 광흡수층제조를 위하여 용매열법 (solvothermal method)으로 CIGS나노입자를 합성하였다. 용매열법은 진공장비를 사용하던 기존의 방법에 비해 저온, 저압에서 저가로 합성할 수 있다는 장점을 가지고 있다. Copper, indium selenium 및 gallium 분말과 유기용매 ethylenediarnine을 autoclave안에서 반응시켜 CIGS 나노입자를 제조하였다. 280 에서 14시간동안 반응시켜 직경이 30-80 nm인 구형에 가까운 CIGS 나노입자를 얻었다. 이것은 용매열법에 의한 4성분계의 CIGS 나노입자의 최초 합성이다. diehyleneamine을 용매로 사용한 경우에 한하여 구형의 CIS 입자를 합성할 수 있다고 보고되었으나, Cu와 이중 N-chelation이 형성되는 ethylenediamine 용매임에도 불구하고 구형의 CIGS 나노분말이 형성된 것은 solution-liquid-solid (SLS) 기구로 설명할 수 있었다. HRSEM, TEM, XRD. EDS으로 나노분말의 형상 크기 및 조성을 조사하여 chalcopyrite 구조의 CuInGaSe$_2$ 임을 확인하였다.

  • PDF

Preparation of nanoparticles CuInSe2 absorber layer by a non-vacuum process of low cost cryogenic milling (저가의 cryogenic milling 비진공법을 이용한 나노입자 CuInSe2 광흡수층 제조)

  • Kim, Ki-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.

Investigation of Photoluminescence and Annealing Effect of PS Layers

  • Han, Chang-Suk;Park, Kyoung-Woo;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 2018
  • N-type porous silicon (PS) layers and thermally oxidized PS layers have been characterized by various measuring techniques such as photoluminescence (PL), Raman spectroscopy, IR, HRSEM and transmittance measurements. The top surface of PS layer shows a stronger photoluminescence peak than its bottom part, and this is ascribed to the difference in number of fine silicon particles of 2~3 nm in diameter. Observed characteristics of PL spectra are explained in terms of microstructures in the n-type PS layers. Common features for both p-type and n-type PS layers are as follows: the parts which can emit visible photoluminescence are not amorphous, but crystalline, and such parts are composed of nanocrystallites of several nm's whose orientations are slightly different from Si substrate, and such fine silicon particles absorb much hydrogen atoms near the surfaces. Light emission is strongly dependent on such fine silicon particles. Photoluminescence is due to charge carrier confinement in such three dimensional structure (sponge-like structure). Characteristics of visible light emission from n-type PS can be explained in terms of modification of band structure accompanied by bandgap widening and localized levels in bandstructure. It is also shown that hydrogen and oxygen atoms existing on residual silicon parts play an important role on emission stability.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Influence of commercial detergents on UF membrane ageing: Case of drinking water

  • Moulin, P.;Regula, C.;Carretier, E.;Wyart, Y.;Sergent, M.;Gesan-Guiziou, G.;Ferry, D.;Vincent, A.;Boudot, D.
    • Membrane and Water Treatment
    • /
    • v.4 no.1
    • /
    • pp.27-51
    • /
    • 2013
  • During cleaning steps, ultrafiltration membranes are mechanically and chemically stressed. This may result in membrane degradations and failures. In this paper, polysulfone membranes were used to evaluate membrane deteriorations by commercial detergents in static conditions. Ageing of the membrane was simulated by immersing samples in solutions containing commercial detergents with various concentrations, temperatures and times defined by experimental designs. Indeed, an innovative approach in the chemical membranes ageing researches, based on methodological tools, was used in order to achieve significant ageing experiments without using an accelerated ageing protocol. The macroscopic changes were monitored by permeability measurements and mechanical strength tests coupled with a microscopic characterization by ATR-FTIR and HRSEM. The present work details results obtained for three commercial detergents: an alkaline, an acidic and an enzymatic detergent. It was found that the detergents used in the industrial advised conditions (concentration, temperature and time of contact) were not detrimental for membrane properties (permeability and elongation at break) and so for the quality of the produced water. Over the industrial cumulated time of contact, different ageing effects can be observed and compared with the ones induced by NaOCl.