DOI QR코드

DOI QR Code

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin

  • Aliyu, A (Department of Chemical Engineering, Federal University of Technology Minna) ;
  • Abdulkareem, AS (Department of Chemical Engineering, Federal University of Technology Minna) ;
  • Kovo, AS (Department of Chemical Engineering, Federal University of Technology Minna) ;
  • Abubakre, OK (Department of Chemical Engineering, Federal University of Technology Minna) ;
  • Tijani, JO (Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology Minna) ;
  • Kariim, I (Department of Chemical Engineering, Federal University of Technology Minna)
  • Received : 2016.08.23
  • Accepted : 2016.10.06
  • Published : 2017.01.31

Abstract

In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.

Keywords

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0.
  2. Yang X, Zou T, Shi C, Lie E, He C, Zhao N. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater Sci Eng A, 660, 11 (2016). https://doi.org/10.1016/j.msea.2016.02.062.
  3. Voelskow K, Becker MJ, Xia W, Muhler M, Turek T. The influence of kinetics, mass transfer and catalyst deactivation on the growth rate of multiwalled carbon nanotubes from ethane on a cobalt-based catalyst. Chem Eng J, 244, 68 (2014). https://doi.org/10.1016/j.cej.2014.01.024.
  4. Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon, 39, 761 (2001). https://doi.org/10.1016/S0008-6223(00)00187-1.
  5. Tombros N, Buit L, Arfaoui I, Tsoufis T, Gournis D, Trikalitis PN, van der Molen SJ, Rudolf P, van Wees BJ. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube. Nano Lett, 8, 3060 (2008). https://doi.org/10.1021/nl080850t.
  6. Tsoufis T, Jankovic L, Gournis D, Trikalitis PN, Bakas T. Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Mater Sci Eng B, 152, 44 (2008). https://doi.org/10.1016/j.mseb.2008.06.029.
  7. Maccallini E, Tsoufis T, Policicchio A, La Rosa S, Caruso T, Chiarello G, Colavita E, Formoso V, Gournis D, Agostino RG. A spectro-microscopic investigation of Fe-Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon, 48, 3434 (2010). http://dx.doi.org/10.1016/j.carbon.2010.05.039.
  8. Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process, 41, 67 (2016). https://doi.org/10.1016/j.mssp.2015.08.013.
  9. Lee CJ, Lyu SC, Kim HW, Park CY, Yang CY. Large-scale production of aligned carbon nanotubes by the vapour phase method. Chem Phys Lett, 359, 109 (2002). https://doi.org/10.1016/S0009-2614(02)00648-6.
  10. Yang X, Wu D, Chen X, Fu R. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C, 114, 8581 (2010). https://doi.org/10.1021/jp101255d.
  11. Dai L, Patil A, Gong X, Guo Z, Liu L, Liu Y, Zhu D. Aligned nanotubes. ChemPhysChem, 4, 1150 (2003). https://doi.org/10.1002/cphc.200300770.
  12. Yardimci AI, Yilmaz S, Selamet Y. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co-Mo/MgO catalyst. Diamond Relat Mater, 60, 81 (2015). https://doi.org/10.1016/j.diamond.2015.10.025.
  13. Chiwaye N, Jewell LL, Billing DG, Naidoo D, Ncube M, Coville NJ. Insitu powder XRD and Mössbauer study of Fe-Co supported on $CaCO_3$. Mater Res Bull, 56, 98 (2014). https://doi.org/10.1016/j.materresbull.2014.04.065.
  14. Liu WW, Chai SP, Mohamed AR, Hashim U. Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem, 20, 1171 (2014). https://doi.org/10.1016/j.jiec.2013.08.028.
  15. Milone C, Piperopoulos E, Lanza M, Santangelo S, Malara A, Mastronardo E, Galvagno S. Influence of the cobalt phase on the highly efficient growth of MWCNTs. Nanomater Nanotechnol, 4, 1 (2014). https://doi.org/10.5772/58457.
  16. Jeong SW, Son SY, Lee DH. Synthesis of multi-walled carbon nanotubes using Co-Fe-Mo/$Al_2O_3$ catalytic powders in a fluidized bed reactor. Adv Powder Technol, 21, 93 (2010). https://doi.org/10.1016/j.apt.2009.10.008.
  17. Schmidt DF, du Fresne von Hohenesche C, Weiss A, Schadler V. Colloidal gelation as a general approach to the production of porous materials. Chem Mater, 20, 2851 (2008). https://doi.org/10.1021/cm7036603.
  18. Mhlanga SD, Coville NJ. Iron-cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes. Diamond Relat Mater, 17, 1489 (2008). https://doi.org/10.1016/j.diamond.2008.01.049.
  19. Dervishi E, Li Z, Xu Y, Saini V, Watanabe F, Biris AR, Bonpain A, Garbay JJ, Meriet A, Richard M, Biris AR. (2009) The influence of Fe-Co/MgO catalyst composition on the growth properties of carbon nanotubes. Part Sci Technol, 27, 222 (2009). https://doi.org/10.1080/02726350902921848.
  20. Mhlanga SD, Mondal KC, Carter R, Witcomb MJ, Coville NJ. The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/$CaCO_3$ catalysts. S Afr J Chem, 62, 67 (2009).
  21. Bahgat M, Farghali AA, El Rouby WMA, Khedr MH. Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J Anal Appl Pyrolysis, 92, 307 (2011). https://doi.org/10.1016/j.jaap.2011.07.002.
  22. Motchelaho MAM, Xiong H, Moyo M, Jewell LL, Coville NJ. Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe-Co supported on $CaCO_3$: correlation with Fischer-Tropsch catalyst activity. J Mol Catal A Chem, 335, 189 (2011). https://doi.org/10.1016/j.molcata.2010.11.033.
  23. Rashidi AM, Akbarnejad MM, Khodadadi AA, Mortazavi Y, Ahmadpourd A. Single-wall carbon nanotubes synthesized using organic additives to Co-Mo catalysts supported on nanoporous MgO. Nanotechnology, 18, 315605 (2007). https://doi.org/10.1088/0957-4484/18/31/315605.
  24. Lodya JAL, Seda T, Strydom AM, Manzini SS. Characterization of Fe/C catalysts supported on $Al_2O_3$, $SiO_2$ and $TiO_2$. J Phy Conf Ser, IOP Publishing, 200, 082016 (2010).
  25. Hall BD, Zanchet D, Ugarte D. Estimating nanoparticle size from diffraction measurements. J Appl Cryst, 33, 1335 (2000). https://doi.org/10.1107/S0021889800010888.
  26. Ratkovic S, Kiss E, Boskovic G. Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts. Chem Ind Chem Eng Q, 15, 263 (2009). https://doi.org/10.2298/CICEQ0904263R.

Cited by

  1. Controlled Syntheses of Multi-walled Carbon Nanotubes from Bimetallic Fe–Co Catalyst Supported on Kaolin by Chemical Vapour Deposition Method pp.2191-4281, 2019, https://doi.org/10.1007/s13369-018-03696-4