Browse > Article
http://dx.doi.org/10.5714/CL.2017.21.033

Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin  

Aliyu, A (Department of Chemical Engineering, Federal University of Technology Minna)
Abdulkareem, AS (Department of Chemical Engineering, Federal University of Technology Minna)
Kovo, AS (Department of Chemical Engineering, Federal University of Technology Minna)
Abubakre, OK (Department of Chemical Engineering, Federal University of Technology Minna)
Tijani, JO (Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology Minna)
Kariim, I (Department of Chemical Engineering, Federal University of Technology Minna)
Publication Information
Carbon letters / v.21, no., 2017 , pp. 33-50 More about this Journal
Abstract
In this study, Fe-Ni bimetallic catalyst supported on kaolin is prepared by a wet impregnation method. The effects of mass of kaolin support, pre-calcination time, pre-calcination temperature and stirring speed on catalyst yields are examined. Then, the optimal supported Fe-Ni catalyst is utilised to produce multi-walled carbon nanotubes (MWCNTs) using catalytic chemical vapour deposition (CCVD) method. The catalysts and MWCNTs prepared using the optimal conditions are characterized using high resolution transmission electron microscope (HRTEM), high-resolution scanning electron microscope (HRSEM), electron diffraction spectrometer (EDS), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), and X-ray diffraction (XRD). The XRD/EDS patterns of the prepared catalyst confirm the formation of a purely crystalline ternary oxide ($NiFe_2O_4$). The statistical analysis of the variance demonstrates that the combined effects of the reaction temperature and acetylene flow rate predominantly influenced the MWCNT yield. The $N_2$ adsorption (BET) and TGA analyses reveal high surface areas and thermally stable MWCNTs. The HRTEM/HRSEM micrographs confirm the formation of tangled MWCNTs with a particle size of less than 62 nm. The XRD patterns of the MWCNTs reveal the formation of a typical graphitized carbon. This study establishes the production of MWCNTs from a bi-metallic catalyst supported on kaolin.
Keywords
Multi-walled carbon nanotubes; kaolin; wet impregnation; factorial design; catalyst; catalytic chemical vapour deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon, 39, 761 (2001). https://doi.org/10.1016/S0008-6223(00)00187-1.   DOI
2 Tombros N, Buit L, Arfaoui I, Tsoufis T, Gournis D, Trikalitis PN, van der Molen SJ, Rudolf P, van Wees BJ. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube. Nano Lett, 8, 3060 (2008). https://doi.org/10.1021/nl080850t.   DOI
3 Tsoufis T, Jankovic L, Gournis D, Trikalitis PN, Bakas T. Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures. Mater Sci Eng B, 152, 44 (2008). https://doi.org/10.1016/j.mseb.2008.06.029.   DOI
4 Maccallini E, Tsoufis T, Policicchio A, La Rosa S, Caruso T, Chiarello G, Colavita E, Formoso V, Gournis D, Agostino RG. A spectro-microscopic investigation of Fe-Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes. Carbon, 48, 3434 (2010). http://dx.doi.org/10.1016/j.carbon.2010.05.039.   DOI
5 Shah KA, Tali BA. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process, 41, 67 (2016). https://doi.org/10.1016/j.mssp.2015.08.013.   DOI
6 Lee CJ, Lyu SC, Kim HW, Park CY, Yang CY. Large-scale production of aligned carbon nanotubes by the vapour phase method. Chem Phys Lett, 359, 109 (2002). https://doi.org/10.1016/S0009-2614(02)00648-6.   DOI
7 Yang X, Wu D, Chen X, Fu R. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C, 114, 8581 (2010). https://doi.org/10.1021/jp101255d.
8 Dai L, Patil A, Gong X, Guo Z, Liu L, Liu Y, Zhu D. Aligned nanotubes. ChemPhysChem, 4, 1150 (2003). https://doi.org/10.1002/cphc.200300770.   DOI
9 Chiwaye N, Jewell LL, Billing DG, Naidoo D, Ncube M, Coville NJ. Insitu powder XRD and Mössbauer study of Fe-Co supported on $CaCO_3$. Mater Res Bull, 56, 98 (2014). https://doi.org/10.1016/j.materresbull.2014.04.065.   DOI
10 Yardimci AI, Yilmaz S, Selamet Y. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co-Mo/MgO catalyst. Diamond Relat Mater, 60, 81 (2015). https://doi.org/10.1016/j.diamond.2015.10.025.   DOI
11 Liu WW, Chai SP, Mohamed AR, Hashim U. Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem, 20, 1171 (2014). https://doi.org/10.1016/j.jiec.2013.08.028.   DOI
12 Milone C, Piperopoulos E, Lanza M, Santangelo S, Malara A, Mastronardo E, Galvagno S. Influence of the cobalt phase on the highly efficient growth of MWCNTs. Nanomater Nanotechnol, 4, 1 (2014). https://doi.org/10.5772/58457.   DOI
13 Jeong SW, Son SY, Lee DH. Synthesis of multi-walled carbon nanotubes using Co-Fe-Mo/$Al_2O_3$ catalytic powders in a fluidized bed reactor. Adv Powder Technol, 21, 93 (2010). https://doi.org/10.1016/j.apt.2009.10.008.   DOI
14 Motchelaho MAM, Xiong H, Moyo M, Jewell LL, Coville NJ. Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe-Co supported on $CaCO_3$: correlation with Fischer-Tropsch catalyst activity. J Mol Catal A Chem, 335, 189 (2011). https://doi.org/10.1016/j.molcata.2010.11.033.   DOI
15 Schmidt DF, du Fresne von Hohenesche C, Weiss A, Schadler V. Colloidal gelation as a general approach to the production of porous materials. Chem Mater, 20, 2851 (2008). https://doi.org/10.1021/cm7036603.   DOI
16 Mhlanga SD, Coville NJ. Iron-cobalt catalysts synthesized by a reverse micelle impregnation method for controlled growth of carbon nanotubes. Diamond Relat Mater, 17, 1489 (2008). https://doi.org/10.1016/j.diamond.2008.01.049.   DOI
17 Dervishi E, Li Z, Xu Y, Saini V, Watanabe F, Biris AR, Bonpain A, Garbay JJ, Meriet A, Richard M, Biris AR. (2009) The influence of Fe-Co/MgO catalyst composition on the growth properties of carbon nanotubes. Part Sci Technol, 27, 222 (2009). https://doi.org/10.1080/02726350902921848.   DOI
18 Mhlanga SD, Mondal KC, Carter R, Witcomb MJ, Coville NJ. The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/$CaCO_3$ catalysts. S Afr J Chem, 62, 67 (2009).
19 Bahgat M, Farghali AA, El Rouby WMA, Khedr MH. Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J Anal Appl Pyrolysis, 92, 307 (2011). https://doi.org/10.1016/j.jaap.2011.07.002.   DOI
20 Rashidi AM, Akbarnejad MM, Khodadadi AA, Mortazavi Y, Ahmadpourd A. Single-wall carbon nanotubes synthesized using organic additives to Co-Mo catalysts supported on nanoporous MgO. Nanotechnology, 18, 315605 (2007). https://doi.org/10.1088/0957-4484/18/31/315605.   DOI
21 Voelskow K, Becker MJ, Xia W, Muhler M, Turek T. The influence of kinetics, mass transfer and catalyst deactivation on the growth rate of multiwalled carbon nanotubes from ethane on a cobalt-based catalyst. Chem Eng J, 244, 68 (2014). https://doi.org/10.1016/j.cej.2014.01.024.   DOI
22 Lodya JAL, Seda T, Strydom AM, Manzini SS. Characterization of Fe/C catalysts supported on $Al_2O_3$, $SiO_2$ and $TiO_2$. J Phy Conf Ser, IOP Publishing, 200, 082016 (2010).
23 Hall BD, Zanchet D, Ugarte D. Estimating nanoparticle size from diffraction measurements. J Appl Cryst, 33, 1335 (2000). https://doi.org/10.1107/S0021889800010888.   DOI
24 Ratkovic S, Kiss E, Boskovic G. Synthesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts. Chem Ind Chem Eng Q, 15, 263 (2009). https://doi.org/10.2298/CICEQ0904263R.   DOI
25 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0.   DOI
26 Yang X, Zou T, Shi C, Lie E, He C, Zhao N. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater Sci Eng A, 660, 11 (2016). https://doi.org/10.1016/j.msea.2016.02.062.   DOI