DOI QR코드

DOI QR Code

The use of HRSEM to characterize new and aged membranes in drinking water production

  • Wyart, Y. (Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2-CNRS-UMR 6181), Universite Paul Cezanne Aix Marseille) ;
  • Nitsche, S. (Centre Interdisciplinaire de Nanoscience de Marseille (CINaM-UPR 3138), Campus de Luminy) ;
  • Chaudanson, D. (Centre Interdisciplinaire de Nanoscience de Marseille (CINaM-UPR 3138), Campus de Luminy) ;
  • Glucina, K. (SUEZ ENVIRONNEMENT, CIRSEE) ;
  • Moulin, P. (Laboratoire de Mecanique, Modelisation et Procedes Propres (M2P2-CNRS-UMR 6181), Universite Paul Cezanne Aix Marseille)
  • Received : 2010.10.14
  • Accepted : 2011.10.05
  • Published : 2011.10.25

Abstract

This work deals with the use of High Resolution Scanning Electron Microscopy (HRSEM) to verify ultrafiltration membrane selectivity at the end of the production line as well as membrane ageing. The first part of this work is focused on new membranes. It is shown that it is better to use sputtering metallization than vacuum deposition, as this latter technique entails thermal damage to the skin layer. Moreover, the impact of the metallization layer on the determination of the membrane pore size is studied and it is observed that no impact of the metallization step can be clearly defined for a metallization layer ranging from 3 to 12 nm. For example, an average pore size of 16.9 nm and a recovery rate of 6.5 % are observed for a 150 kDa cellulose acetate membrane. These results are in agreement with those given by the manufacturer: pore size ranging from 10 to 15 nm and recovery rate ranging from 5 to 10 %. The second part of this work focuses on the study of membrane ageing. A PVDF hollow fibre membrane is studied. It is shown that a 65 % decrease in the permeate flux can be linked to a decrease in the number of pores at the surface of the membrane and a decrease in the recovery rate. In conclusion, a mapping of the pores is performed for several new hollow fibre membranes used to produce drinking water, made of different materials, with different geometries and molecular weight cut-off. These results provide reference data that will help better understand the phenomena of membrane fouling and membrane ageing.

Keywords

References

  1. Allen, T.D. and Goldberg M.W. (1993), "High-resolution SEM in cell biology", Trends in Cell Biology, 3(6), 205-208. https://doi.org/10.1016/0962-8924(93)90215-M
  2. Bottino, A., Capannelli, G., Grosso, A., Monticelli, O., Cavalleri, O., Rolandi, R. and Soria, R. (1994), "Surface characterization of ceramic membranes by atomic force microscopy", J. Membrane Sci., 95(3), 289-296. https://doi.org/10.1016/0376-7388(94)00132-4
  3. Chahboun, A., Coratger, R., Ajustron, F., Beauvillain, J., Aimar, P. and Sanchez, V. (1992), "First investigations on the use of scanning tunnelling microscopy (STM) for the characterisation of porous membranes", J. Membrane Sci., 67(2-3), 295-300. https://doi.org/10.1016/0376-7388(92)80033-G
  4. Chan, R. and Chen, V. (2004), "Characterization of protein fouling on membranes: opportunities and challenges", J. Membrane Sci., Membrane Engineering Special Issue, 242(1-2), 169-188.
  5. Chen, V., Li, H. and Fane, A.G. (2004), "Non-invasive observation of synthetic membrane processes-a review of methods", J. Membrane Sci., 241(1), 23-44. https://doi.org/10.1016/j.memsci.2004.04.029
  6. Elimelech, M., Xiaohua, Z., Childress, A.E. and Seungkwan, H. (1997), "Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes", J. Membrane Sci., 127(1), 101-109. https://doi.org/10.1016/S0376-7388(96)00351-1
  7. Hernandez, A., Calvo, J.I., Pradanos, P. and Tejerina, F. (1998), "Pore size distributions of track-etched membranes; comparison of surface and bulk porosities", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138(2-3), 391-401. https://doi.org/10.1016/S0927-7757(96)03974-X
  8. Hirose, M., Ito, H. and Kamiyama, Y. (1996), "Effect of skin layer surface structures on the flux behaviour of RO membranes", J. Membrane Sci., 121(2), 209-215. https://doi.org/10.1016/S0376-7388(96)00181-0
  9. Kim, K.J. and Fane, A.G. (1994), "Low voltage scanning electron microscopy in membrane research", J. Membrane Sci., 88(1), 103-114. https://doi.org/10.1016/0376-7388(93)E0176-K
  10. Hwang, K.J. and Lin, T.T. (2002), "Effect of morphology of polymeric membrane on the performance of crossflow microfiltration", J. Membrane Sci., 199(1-2), 41-52. https://doi.org/10.1016/S0376-7388(01)00675-5
  11. Kim, K.J., Fane, A.G., Fell, C.J.D., Suzuki, T. and Dickson, M.R. (1990), "Quantitative microscopic study of surface characteristics of ultrafiltration membranes", J. Membrane Sci., 54(1-2), 89-102. https://doi.org/10.1016/S0376-7388(00)82072-4
  12. Kim, J.Y., Lee, H.K. and Kim, S.C. (1999), "Surface structure and phase separation mechanism of polysulfone membranes by atomic force microscopy", J. Membrane Sci., 163(2), 159-166. https://doi.org/10.1016/S0376-7388(99)00164-7
  13. Masselin, I., Durand-Bourlier, L., Laine, J.M., Sizaret, P.Y., Chasseray, X. and Lemordant, D. (2001), "Membrane characterization using microscopic image analysis", J. Membrane Sci., 186(1), 85-96. https://doi.org/10.1016/S0376-7388(00)00657-8
  14. Meieran, E.S. and Kamins, T.I. (1973), "High-resolution SEM observation of semiconductor device crosssections", Solid-State Electronics, 16(5), 545-548. https://doi.org/10.1016/0038-1101(73)90153-6
  15. Pontie, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J. and Suty, H. (2005), "Tools for membrane autopsies and antifouling strategies in seawater feeds: a review", Desalination, 181(1-3), 75-90. https://doi.org/10.1016/j.desal.2005.01.013
  16. Sheldon, J.M. (1991), "The fine-structure of ultrafiltration membranes. I. Clean membranes", J. Membrane Sci., 62(1), 75-86. https://doi.org/10.1016/0376-7388(91)85005-P
  17. Tagawa, T., Mori, J., Aita, S. and Ogura, K. (1978), "Application of the high resolution SEM to the fine structure study of polyethylene", Micron, 9(4), 215-221.
  18. Warczok, J., Ferrando, M., Lopez, F. and Guell, C. (2004), "Concentration of apple and pear juices by nanofiltration at low pressures", Journal of Food Engineering, 63(1), 63-70. https://doi.org/10.1016/S0260-8774(03)00283-8
  19. Wickramasinghe, S.R., Bower, S.E., Chen, Z., Mukherjee, A. and Husson, S.M. (2009). "Relating the pore size distribution of ultrafiltration membranes to dextran rejection", J. Membrane Sci., 340(1-2), 1-8. https://doi.org/10.1016/j.memsci.2009.04.056
  20. Wu, Q. and Wu, B. (1995), "Study of membrane morphology by image analysis of electron micrographs", J. Membrane Sci., 105(1-2), 113-120. https://doi.org/10.1016/0376-7388(95)00055-H
  21. Wyart, Y., Georges, G., Deumie, C., Amra, C. and Moulin, P. (2008), "Membrane characterization by microscopic methods: multiscale structure", J. Membrane Sci., 315(1-2), 82-92. https://doi.org/10.1016/j.memsci.2008.02.010
  22. Xiuli, Y., Hongbin, C., Xiu, W. and Yongxin, Y. (1998), "Morphology and properties of hollow-fiber membrane made by PAN mixing with small amount of PVDF", J. Membrane Sci., 146(2), 179-184. https://doi.org/10.1016/S0376-7388(98)00107-0
  23. Zeman, L. and Denault, L. (1992), "Characterization of microfiltration membranes by image analysis of electron micrographs. : Part I. Method development", J. Membrane Sci., 71(3), 221-231. https://doi.org/10.1016/0376-7388(92)80207-Z
  24. Ziel, R., Haus, A. and Tulke, A. (2008), "Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis", J. Membrane Sci., 323(2), 241-246. https://doi.org/10.1016/j.memsci.2008.05.057

Cited by

  1. Analysis of performance criteria for ultrafiltration membrane integrity test using magnetic nanoparticles vol.353, 2014, https://doi.org/10.1016/j.desal.2014.09.004
  2. SEM imaging of membranes: Importance of sample preparation and imaging parameters vol.463, 2014, https://doi.org/10.1016/j.memsci.2014.03.048
  3. Morphological analysis of flat and hollow fiber membranes by optical and microscopic methods as a function of the fouling vol.472, 2014, https://doi.org/10.1016/j.memsci.2014.08.012
  4. Étude comparative de deux méthodes de caractérisation de membranes d’ultrafiltration et de nanofiltration : la porométrie bi-liquide et le transport de solutés neutres vol.18, pp.5, 2015, https://doi.org/10.1016/j.crci.2014.10.009