• Title/Summary/Keyword: HMDS

Search Result 104, Processing Time 0.051 seconds

A Study on the Circuit Design Methodology and Performance Evaluation for Hybrid Gate Driver (하이브리드 게이트 드라이버를 위한 회로 디자인 방법과 성능 평가에 관한 연구)

  • Cho, Geunho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.381-387
    • /
    • 2021
  • As Head-Mounted Displays(HMDs), which are mainly used to maximize realism in games and videos, have experienced increased demand and expanded scope of use in education and training, there is growing interest in methods to enhance the performance of conventional HMDs. In this study, a methodology to utilize Carbon NanoTubes(CNTs) to improve the performance of gate drivers that send control signals to each pixel circuit of the HMD is discussed. This paper proposes a new circuit design method that replaces the transistors constituting the buffer part of the conventional gate driver with transistors incorporating CNTs and compare the performance of the suggested gate drive with that of a gate driver comprising only conventional transistors via simulations. According to the simulation results, by including CNTs in the gate driver, the output voltage can be increased by approximately 0.3V compared to the conventional gate driver high voltage(1.1V) at a speed of 12.5 GHz and the gate width also can be reduced by up to 20 times.

Characteristics of porous 3C-SiC thins formed by anodization (양극 산화법으로 형성된 다공질 3C-SiC 막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS (Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 ~ 90 nm was achieved at 7.1 $mA/cm^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 $cm^{-1}$. PL shows the band gap enegry of thin film (2.5 eV) and porous 3C-SiC (2.7 eV).

  • PDF

Hospital Medicine Delivery System Design applied RFID (전자태그(RFID)를 적용한 병원 약물전달 시스템 설계(HMDS))

  • Lim Keun;Ju Jin-Sun;Lee Hye-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.581-584
    • /
    • 2006
  • 병원에서는 RFID를 적용하여 병원종사자의 동선관리 및 의료 장비 등의 활용성을 개선함으로서 의료환경에 많은 변화가 일어나고 있으며 의료 서비스 향상에 크게 기여하고 있다. 그러나 의료 서비스에 앞서 더욱 중요한 의료 안전분야 에서는 여러 문제점 등이 내재되어 있다. 감염된 혈액의 수혈사고, 수술환자의 이동사고, 약물전달사고 등이 있다. 이러한 문제는 의료서비스 향상에도 불구하고, 의료 안전에 대한 부분이 상대적으로 배재되기 때문에 나타나는 것으로 판단된다. 본 논문에서는 특히 약물전달에 RFID를 적용하여 약물 전달사고를 최소화 하고자 한다.

  • PDF

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

CVD로 성장된 다결정 3C-SiC 박막의 전기적 특성

  • An, Jeong-Hak;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.179-182
    • /
    • 2007
  • Polycrystaline (poly) 3C-SiC thin film on n-type and p-type Si were deposited by APCVD using HMDS, $H_2$, and Ar gas at $1180^{\circ}C$ for 3 hour. And then the schottky diode with Au/poly 3C-Sic/Si(n-type) structure was fabricated. Its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) value were measured as 0.84 V, over 140 V, 61nm, and $2.7{\times}10^{19}\;cm^3$, respectively. The p-n junction diode fabricated by poly 3C-SiC was obtained like characteristics of single 3C-SiC p-n junction diode. Therefore, its poly 3C-SiC thin films are suitable MEMS applications in conjuction with Si fabrication technology.

  • PDF

The uniform polycrystalline 3C-SiC thin film growth by the gas flow control (가스흐름 제어에 의한 균일한 다결정 3C-SiC 박막 성장)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.92-92
    • /
    • 2008
  • The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of polycrystalline 3C-SiC thin films by the gas flow control according to the location change of geometric structure. The polycrystalline 3C-SiC thin film was deposited by APCVD(Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS(Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 5 slm Ar as the main flow gas. According to the location of geometric structure, surface fringes and flatness changed. It shows the distribution of thickness is formed uniformly in the specific location of the geometric structure.

  • PDF

Mechanical Properties of in-situ Doped Polycrystalline 3C-SiC Thin Films by APCVD (APCVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.235-238
    • /
    • 2009
  • This paper describes the mechanical properties of poly (Polycrystalline) 3C-SiC thin films with $N_2$ in-situ doping. In this work, the poly 3C-SiC film was deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) method using single-precursor HMDS (Hexamethyildisilane: $Si_2(CH_3)_6)$ at $1200^{\circ}C$. The mechanical properties of doped poly 3C-SiC thin films were measured by nono-indentation according to the various $N_2$ flow rate. In the case of 0 sccm $N_2$ flow rate, Young's Modulus and hardness were obtained as 285 GPa and 35 GPa, respectively. Young's Modulus and hardness were decreased according to increase of $N_2$ flow rate. The crystallinity and surface roughness was also measured by XRD (X-Ray Diffraction) and AFM (Atomic Force Microscopy), respectively.

Mechanical characteristics of polycrystalline 3C-SiC thin films using Ar carrier gas by APCVD (순 아르콘 캐리어 가스와 APCVD로 성장된 다결정 3C-SiC 박막의 기계적 특성)

  • Han, Ki-Bong;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.319-323
    • /
    • 2007
  • This paper describes the mechanical characteristics of poly 3C-SiC thin films grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC thin film was deposited by APCVD method using only Ar carrier gas and single precursor HMDS at $1100^{\circ}C$. The elastic modulus and hardness of poly 3C-SiC thin films were measured using nanoindentation. Also, the roughness of surface was investigated by AFM. The resulting values of elastic modulus E, hardness H and the roughness of the poly 3C-SiC film are 305 GPa, 26 GPa and 49.35 nm respectively. The mechanical properties of the grown poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion, high frequency and MEMS applications.

Design of Diffraction Limited Head Mounted Display Optical System Based on High Efficiency Diffractive Elements

  • Tehrani, Masoud Kavosh;Fard, Sayed Sajjad Mousavi
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.150-156
    • /
    • 2017
  • A diffraction limited optical system for head mounted displays (HMDs) was designed. This optical system consists of four modules, including 1:5 mm and 5:30 mm beam expanders, polarization grating-polarization conversion system (PG-PCS) and refractive/diffractive projection optical module. The PG-PCS module transforms the unpolarized Gaussian beam to a linearly polarized beam and it simultaneously homogenizes the spatial intensity profile. The optical projector module has a $30^{\circ}$ field of view, a 22 mm eye relief, and a 10 mm exit pupil diameter with a compact structure. Common acrylic materials were utilized in the optical design process; therefore, the final optical system was lightweight. The whole optical system is suitable for a 0.7 inch liquid crystal on silicon microdisplay (LCOS) with HDTV resolution ($1920{\times}1080$) and $8.0{\mu}m$ pixel pitch.

Improvement of Pentacene TFTs performance by surface treatment on Poly(4-vinylephenol) Gate insulator (Poly (4-vinylephenol) Gate 절연층의 표면 처리에 의한 Pentacene TFT의 성능 비교)

  • Kim, Hong-Suk;Ahn, Seok-Keun;Xu, Yong-Xian;Hang, Seung-Bum;Song, Chung-Kun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.477-478
    • /
    • 2006
  • In this paper, we could improve the mobility with OTS treatment on PVP gate, and also reduce the off-state current, which was usually large after OTS treatment, by using cosolvent. Also we treated Hexamethyl-disilazane (HMDS) and Ozone on PVP. It gives large off-state currents and on-currents.

  • PDF