• Title/Summary/Keyword: HL-60 cells

Search Result 343, Processing Time 0.03 seconds

Validation of Human HazChem Array Using VOC Exposure in HL-60 Cells

  • Oh, Moon-Ju;Kim, Seung-Jun;Kim, Jun-Sub;Kim, Ji-Hoon;Park, Hye-Won;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.45-51
    • /
    • 2008
  • Volatile Organic Compounds (VOCs) have been shown to cause nervous system disorders through skin contact or respiration, and also cause foul odors even at low densities in most cases. Also, as a compound itself, VOCs are directly harmful to the environment and to the human body, and may participate in photochemical reactions in air to create secondary pollutants. In this study, HL-60 cells were treated with volatile organic compounds, including ethylbenzene and trichloroethylene, at a value of $IC_50$. Then, the in house-prepared Human HazChem arrayer was utilized in order to compare the gene expression between the two VOCs. After hybridization, 8 upregulated genes and 8 downregulated genes were discovered in the HazChem array. The upregulated genes were identified as SG15, TNFSF10, PRNP, ME1, NCOA4, SRXN1, TXNRD1, and XBP1. The downregulated genes were identified as MME, NRF1, PRARBP, CALCA, CRP, BAX, C7 or f40, and FGFR1. Such results were highly correlated with the quantitative RT-PCR results. The majority of the 16 genes were related with the characteristics of VOCs, including respiratory mechanism, apoptosis, and carcinogenesis-associated genes. Our data showed that our human HazChem array can be used to monitor hazardous materials via gene expression profiling.

Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia

  • Chen, Lianxiang;Wang, Wei;Cao, Lixia;Li, Zhijun;Wang, Xing
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.330-336
    • /
    • 2016
  • Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cance-rassociated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Reintroduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.

Anti-tumor Activities of Haeamdan on Various Cancer Cells (해암단이 수종의 암세포에 미치는 항암 효과)

  • Lee, Jee Young;Oh, Hye Kyung;Ryu, Han Sung;Kim, Nam Jae;Jung, Won-Yong;Oh, Hyun-A;Choi, Hyuck Jai;Yoon, Seong Woo;Ryu, Bong-Ha
    • Journal of Korean Traditional Oncology
    • /
    • v.20 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Objective : The objective of this study was to investigate the anti-tumor activity of the complexed herbal formula, Haeamdan (HAD). Methods : Seven Cancer cell lines, LoVo, MCF-7, AGS, Sarcoma 180, HL-60, NCI-H69, LL/2, were prepared and the cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-dephenyl tetrazolium bromide (MTT) assay. HAD was applied with various concentrations from 0.1 to 1.0 mg/ml to figure out the appropriate dosage. ICR male mice were intraperitoneally implanted with Sarcoma 180 and divided into 8 species for each group. Control group was treated with normal saline, positive control group was treated with cyclophosphamide 8mg/kg, and experimental group was treated with HAD 1g/kg. Results : Among seven cancer cell lines, HAD exhibited strong cytotoxic activities to followed four cancer cell lines, that is, Sarcoma 180, HL-60, NCI-H69, and LL/2. These cytotoxic activity was expressed under 0.50 mg/ml of IC50 under 0.1~1mg/ml of OBW. When Sarcoma 180 cancer cell was implanted in ICR male mice and treated with the HAD, HAD prolonged the median overall survival for 3.6 days, from 17.5 to 21.1 days. Conclusion : HAD showed strong cytotoxicity to the cancer cells, Sarcoma 180, HL-60, NCI-H69, on in vitro study and it showed anti-tumor activity in vivo with the peritoneal cancer mice by prolonging the median survival for 3.6 days. Further researches would be expected to support the anti-tumor efficacy of HAD.

Diallyl Disulfide (DADS) Induces Upregulation of PTEN in Human Leukemia Cells

  • Chung, Weon-Kuu;Lee, Byoung-Kil;Lee, Young-Rae;Park, Jin-Ny;Kwon, Hyoung-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • The differentiation of leukemia cells into mature cells is a major target of the human leukemia therapy. As differentiated leukemia cells lose their proliferative and tumor-forming abilities, differentiation inducers may be useful for the treatment of leukemia. In this study, the experiments were designed to determine whether diallyl disulfide (DADS) regulates expressions of tumor suppressor protein PTEN (phosphatase and tension homologue) in HL60 cells. DADS causes upregulation of PTEN in a time- and dose-dependent manner, which was correlated with decrease of phospho-Akt level. These results suggest that DADS induces upregulation of PTEN in human leukemia cells. These results suggest that DADS may be a useful anticancer agent for management of human leukemia.

Induction of Quinone Reductase and Glutathione S-Transferase in Murine Hepatoma Cells by Flavonoid Glycosides

  • Kim, Jung-Hyun;Lee, Jeong-Soon;Kim, Young-Chan;Chung, Shin-Kyo;Kwon, Chong-Suk;Kim, Young-Kyoon;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.365-371
    • /
    • 2003
  • The potential of seven flavonoid glycosides to induce quinone reductase (QR), an anticarcinogenic marker enzyme, in murine hepatoma cells (hepalc1c7) and its mutant cells (BPRc1) was evaluated. Among test compounds, kaempferol-3-O-glucoside, luteolin-6-c-glucoside, and quercetin-3-O-glucoside (Q-3-G) induced QR in hepalc1c7 cells in a dose-dependent manner. However, in BPRc1 cells lacking arylhydrocarbon receptor nuclear translocator (ARNT), only Q-3-G caused a significant induction of quinone reductase at the concentration range of 0.5 to 8 ug/mL, suggesting that it is a monofunctional inducer. Q-3-G induced not only phase 2 enzymes, including QR and glutathione-S-transferase, but also nitroblue tetrazolium reduction activity in HL-60 cells, a biochemical marker for cell differentiation promoting agents. In conclusion, Q-3-G merits further study to evaluate its cancer chemopreventive potential.

CELL CYCLE ARREST AND INDUCTION OF APOPTOSIS BY NOVEL CDK INHIBITOR IS ASSOCIATED WITH $p161^{NK4A}$ UP-REGULATION IN HUMAN PROMYELOCYTIC LEUKEMIA CELLS

  • Park, Bu-Young;Kim, Min-Kyoung;Kim, Hak-Yup;Cho, Youl-Hee;Lee, Chul-Hoon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.151-152
    • /
    • 2001
  • MCS-5A, novel Cdk inhibitor, has been reported that it has exerted cell cycle arrest action and apoptotic effect to the human promyelocytic leukemias cell. The purpose of this study is to verify these effects of MCS-5A on human promyelocytic leukemia (HL-60) cells and to clarify the action of mechanism on MCS-5A-inducing apoptosis.(omitted)

  • PDF

The Role of Sphingolipids Cycle in Hydrogen Peroxide-Induced Apoptosis in HL-60 Cells

  • Son , Jung-Hyun;Lee, Jae-Ick;Yang , Ryung;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.213.1-213.1
    • /
    • 2003
  • Sphingolipids and their metabolites are highly bioactive molecules that affect various cellular functions including differentiation, cellular senescence, apoptosis, and proliferation when added exogenously, or elevated intracellularly by turnover of complex sphingolipids or synthesis from de novo pathway. We are investigating the relationship of sphingolipids cycle in apoptosis early events. A new column liquid chromatography- tandem mass spectrometry (LC/MS/MS) in combination with multiple reaction monitoring (MRM) method was developed for the rapid, simultaneous and quantitative determination of unambiguous detecting sphingolipids in cells. (omitted)

  • PDF

The Effects of Cysteamine on the Radiation-Induced Apoptosis (방사선조사에 의해 발생되는 세포고사에 대한 Cysteamine의 효과)

  • Choi, Young-Min;Park, Chang-Gyo;Cho, Heung-Lae;Lee, Hyung-Sik;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.3
    • /
    • pp.214-219
    • /
    • 2000
  • Purpose : To Investigate the pathways of radiation induced apoptosls and the effect of cysteamine (${\beta}$-mercaptoethyiamine), as a radioprotector, on it. Materials and Methods : HL-50 ceils were assigned to control, irradiated, and cysteamlne (1 mM, 10mM) pretreated groups. Irradiation was given In a single fraction of 10 Gy (6 MV x-ray) and cysteamine was administered 1 hour before irradiation. The activities of caspase-8 were measured in control and irradiated group to evaluate its relation to the radiation Induced apoptosis. To evaluate the role of cysteamine In radiation Induced apoptosis, the number of viable cells, the expression and activity of caspase-3, and the expression of poly (ADP-ribose) polymerase (PARP) were measured and compared after irradiating the HL-60 celis with cysteamine pretreatment or not. Results : The intraceliular caspase-8 activity, known to be related to the death receptor induced apoptosis, was not affected by irradiation(p>0.05). The number of viable cells began to decrease from 6 hours after irradiation (p>0.05), but the number of viable cells In 1 mM cysteamine pretreated group was not decreased after irradiation and was similar to those in the control group. In caspase-3 analyses, known as apoptosis executioner, its expression was not different but its activity was Increased by irradiation(p>0.05). However, this Increase of activity was suppressed by the pretreatment of 1 mM cysteamine. The cleavage of PARP, thought to be resulted from caspase-3 activation, occurred after irradiation which was attenuated by the pretreatment of 1 mM cysteamine. Conclusion : These results show that radiation induced apoptotic process is somewhat different from death receptor induced one and the pretreatment of 1 mM cysteamine has a tendency to decrease the radiation-induced apoptosis in HL-60 cells.

  • PDF

Induction of Apoptosis and Antitumor Activity by Stichoposide D through the Generation of Ceramide in Human Leukemia Cells (Stichoposide D의 백혈병 세포주에서 세라마이드 생성을 통한 세포 사멸 유도 및 항암 작용)

  • Park, Eun-Seon;Yun, Seung-Hoon;Shin, Sung-Won;Kwak, Jong-Young;Park, Joo-In
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.760-771
    • /
    • 2012
  • Marine triterpene glycosides are physiologically active natural compounds isolated from sea cucumbers(holothurians). It was demonstrated that they have a wide range of biological activities, including antifungal, cytotoxic, and antitumor effects. A previous study showed that stichoposide C (STC) isolated from Thelenota anax induces apoptosis through generation of ceramide by activation of acid sphingomyelinase (SMase) and neutral SMase in human leukemia cells. In this study, we investigated whether STD, a structural analog of STC, can induce apoptosis and examined the molecular mechanisms for its activity. It was found that STC and STD induce apoptosis in a dose- and time-dependent manner and lead to the activation of caspase-8, mitochondrial damage, activation of caspase-9, and activation of caspase-3 in K562 and HL-60 cells. STC activates acid SMase and neutral SMase, which results in the generation of ceramide. Specific inhibition of acid SMase or neutral SMase partially blocked STC-induced apoptosis, but not STD-induced apoptosis. In contrast, STD generates ceramide through the activation of ceramide synthase. Specific inhibition of ceramide synthase partially blocked STD-induced apoptosis, but not STC-induced apoptosis. Moreover, STC and STD markedly reduced tumor growth of HL-60 xenograft tumors and increased ceramide generation in vivo. These results indicate that STC and STD can induce apoptosis and have antitumor activity through the different molecular mechanisms, because they have a different sugar residue attached to aglycones. Thus, these results suggest that their actions are affected by a sugar residue attached to aglycones and they can be used as anticancer agents in the treatment of leukemia.

Review of Anti-Leukemia Effects from Medicinal Plants (항 백혈병작용에 관련된 천연물의 자료조사)

  • Pae Hyun Ock;Lim Chang Kyung;Jang Seon Il;Han Dong Min;An Won Gun;Yoon Yoo Sik;Chon Byung Hun;Kim Won Sin;Yun Young Gab
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.605-610
    • /
    • 2003
  • According to the Leukemia and Lymphoma Society, leukemia is a malignant disease (cancer) that originates in a cell in the marrow. It is characterized by the uncontrolled growth of developing marrow cells. There are two major classifications of leukemia: myelogenous or lymphocytic, which can each be acute or chronic. The terms myelogenous or lymphocytic denote the cell type involved. Thus, four major types of leukemia are: acute or chronic myelogenous leukemia and acute or chronic lymphocytic leukemia. Leukemia, lymphoma and myeloma are considered to be related cancers because they involve the uncontrolled growth of cells with similar functions and origins. The diseases result from an acquired (not inherited) genetic injury to the DNA of a single cell, which becomes abnormal (malignant) and multiplies continuously. In the United States, about 2,000 children and 27,000 adults are diagnosed each year with leukemia. Treatment for cancer may include one or more of the following: chemotherapy, radiation therapy, biological therapy, surgery and bone marrow transplantation. The most effective treatment for leukemia is chemotherapy, which may involve one or a combination of anticancer drugs that destroy cancer cells. Specific types of leukemia are sometimes treated with radiation therapy or biological therapy. Common side effects of most chemotherapy drugs include hair loss, nausea and vomiting, decreased blood counts and infections. Each type of leukemia is sensitive to different combinations of chemotherapy. Medications and length of treatment vary from person to person. Treatment time is usually from one to two years. During this time, your care is managed on an outpatient basis at M. D. Anderson Cancer Center or through your local doctor. Once your protocol is determined, you will receive more specific information about the drug(s) that Will be used to treat your leukemia. There are many factors that will determine the course of treatment, including age, general health, the specific type of leukemia, and also whether there has been previous treatment. there is considerable interest among basic and clinical researchers in novel drugs with activity against leukemia. the vast history of experience of traditional oriental medicine with medicinal plants may facilitate the identification of novel anti leukemic compounds. In the present investigation, we studied 31 kinds of anti leukemic medicinal plants, which its pharmacological action was already reported through many experimental articles and oriental medical book: 『pharmacological action and application of anticancer traditional chinese medicine』 In summary: Used leukemia cellline are HL60, HL-60, Jurkat, Molt-4 of human, and P388, L-1210, L615, L-210, EL-4 of mouse. 31 kinds of anti leukemic medicinal plants are Panax ginseng C.A Mey; Polygonum cuspidatum Sieb. et Zucc; Daphne genkwa Sieb. et Zucc; Aloe ferox Mill; Phorboc diester; Tripterygium wilfordii Hook .f.; Lycoris radiata (L Her)Herb; Atractylodes macrocephala Koidz; Lilium brownii F.E. Brown Var; Paeonia suffruticosa Andr.; Angelica sinensis (Oliv.) Diels; Asparagus cochinensis (Lour. )Merr; Isatis tinctoria L.; Leonurus heterophyllus Sweet; Phytolacca acinosa Roxb.; Trichosanthes kirilowii Maxim; Dioscorea opposita Thumb; Schisandra chinensis (Rurcz. )Baill.; Auium Sativum L; Isatis tinctoria, L; Ligustisum Chvanxiong Hort; Glycyrrhiza uralensis Fisch; Euphorbia Kansui Liou; Polygala tenuifolia Willd; Evodia rutaecarpa (Juss.) Benth; Chelidonium majus L; Rumax madaeo Mak; Sophora Subprostmousea Chunet T.ehen; Strychnos mux-vomical; Acanthopanax senticosus (Rupr.et Maxim.)Harms; Rubia cordifolia L. Anti leukemic compounds, which were isolated from medicinal plants are ginsenoside Ro, ginsenoside Rh2, Emodin, Yuanhuacine, Aleemodin, phorbocdiester, Triptolide, Homolycorine, Atractylol, Colchicnamile, Paeonol, Aspargus polysaccharide A.B.C.D, Indirubin, Leonunrine, Acinosohic acid, Trichosanthin, Ge 132, Schizandrin, allicin, Indirubin, cmdiumlactone chuanxiongol, 18A glycyrrhetic acid, Kansuiphorin A 13 oxyingenol Kansuiphorin B. These investigation suggest that it may be very useful for developing more effective anti leukemic new dregs from medicinal plants.