해암단이 수종의 암세포에 미치는 항암 효과

이지영¹ · 오혜경¹ · 류한성¹ · 김남재² · 정원용² · 오현아² 최혁재² · 윤성우¹ · 류봉하³

¹ 강동경희대학교병원 한방암센터 한방내과, ² 경희대학교 동서의학연구소 약물연구부 ³ 경희대학교 한방병원 비계내과

Abstract

Anti-tumor Activities of Haeamdan on Various Cancer Cells

Jee Young Lee¹, Hye Kyung Oh¹, Han Sung Ryu¹, Nam Jae Kim², Won-Yong Jung², Hyun-A Oh², Hyuck Jai Choi², Seong Woo Yoon¹, Bong-Ha Ryu³

¹ Department of Korean Internal Medicine, Kyung Hee University Hospital at Gangdong

Received 15 November 2015, revised 19 December 2015, accepted 20 December 2015

Objective: The objective of this study was to investigate the anti-tumor activity of the complexed herbal formula, Haeamdan (HAD).

Methods: Seven Cancer cell lines, LoVo, MCF-7, AGS, Sarcoma 180, HL-60, NCI-H69, LL/2, were prepared and the cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-dephenyl tetrazolium bromide (MTT) assay. HAD was applied with various concentrations from 0.1 to 1.0 mg/ml to figure out the appropriate dosage. ICR male mice were intraperitoneally implanted with Sarcoma 180 and divided into 8 species for each group. Control group was treated with normal saline, positive control group was treated with cyclophosphamide 8mg/kg, and experimental group was treated with HAD 1g/kg.

Results: Among seven cancer cell lines, HAD exhibited strong cytotoxic activities to followed four cancer cell lines, that is, Sarcoma 180, HL-60, NCI-H69, and LL/2. These cytotoxic activity was expressed under 0.50 mg/ml of IC50 under 0.1~1mg/ml of OBW. When Sarcoma 180 cancer cell was implanted in ICR male mice and treated with the HAD, HAD prolonged the median overall survival for 3.6 days, from 17.5 to 21.1 days.

Conclusion: HAD showed strong cytotoxicity to the cancer cells, Sarcoma 180, HL-60, NCI-H69, on *in vitro* study and it showed anti-tumor activity *in vivo* with the peritoneal cancer mice by prolonging the median survival for 3.6 days. Further researches would be expected to support the anti-tumor efficacy of HAD.

² East-West Medical Research Institute, Kyung Hee University Medical Center

³ Department of Korean Internal Medicine, Kyung Hee University Medical Center

Key words: Haeamdan, Anti-tumor activity, Herbal medicine, Sarcoma 180

교신저자 : 윤성우, mail: stepano212@hanmail.net, Fax: 02-440-7287, Phone: 02-440-7279, Address: 서울시 강동구 동남로892 최혁재, mail: nicchoi@khmc.or.kr, Fax: 02-958-9531, Phone: 02-958-9539, Address: 서울 동대문구 경희대로23

서 롲

중앙암등록본부의 2012년 국가암등록통계자 료에 따르면 평균수명까지 생존 시 한 종류 이 상의 암이 발생할 확률은 37.3%이며 매년 10만 명 중 299명이 발생하는 수준으로 우리나라의 암 발생율은 OECD 국가의 평균보다도 높다.1) 각종 표적 치료제가 개발되면서 늘어난 치료비 에 대한 경제적인 측면까지 고려한다면 암의 중요성은 더욱 커지게 된다.2) 따라서 보다 적은 부작용으로 효율적이고 경제적으로 종양억제를 하고자 하는 노력들은 다각적인 측면에서 지속 될 필요가 있다. 한약재를 포함하는 천연물의 항암활성 능력을 탐색하는 것 또한 이런 노력 의 일례라고 하겠다.

현재까지 이런 노력들은 종합적인 문헌 고찰, 문헌에 기재된 효과를 재차 검증하고자 하는 실험논문, 임상에 적용하고자 하는 임상시험, 한약재를 검증하여 그대로 사용하거나 성분을 추출하거나 복합적으로 사용할 경우에 대한 연 구 등 여러 방면에서 다각적으로 이루어지고 있다.3),4) 이에 따라 의학서적 등 문헌을 탐색하 여 당귀, 황기, 반하, 천남성, 고삼, 오수유 등 다양한 약재 및 처방의 효과를 규명하고 있으 나,5),6) 이들은 대개 다빈도 약물에 초점을 맞추 고 종합의서들을 종합하여 근거를 도출하고 있 는데 그 근거가 되는 종합의서들은 대개 후세 방 위주로 구성되어 그 처방 및 약재의 인용범 위에 암묵적인 한계가 있을 가능성을 함께 고 려할 필요가 있다. 따라서 이런 탐색과 더불어 근현대에 출간된 서적에 대한 관심 및 현대의 천연물 연구가 함께 이루어져야 인식의 한계를

보다 넓힐 수 있을 것으로 사료된다.

그중 본 연구는 1990년대에 출간된 한의양방 선7)과 암보감8)에서 유래된 해암단 (解癌丹)에 대하여 실험적으로 종양억제 효과를 판단하고 자 한다. 이 처방은 三稜 蓬朮 巴豆 등의 破 瘀之劑와 瓦松 乾漆 등 천연 항암활성을 보이 는 약재, 薏苡仁 金銀花 등의 排膿 효과가 있 다고 알려진 약재들을 균형있게 배합하여 암의 통용방으로 투여한다고 기술되고 있어 과연 실 제로도 종양억제 효과가 있는지 실험 및 임상 적 검증이 뒷받침될 필요가 있고, 종합의서의 한계를 벗어난 처방에 대한 항암 효과를 검증 하려는 시도라고 할 수 있겠다.

이에 본 연구에서는 해암환의 가감 처방에 해당하는 해암단의 효과를 대장암세포인 LoVo, 유방암세포인 MCF-7, 위암세포인 AGS, 복강암 세포인 Sarcoma 180, 백혈병 세포인 HL-60, 소 세포성폐암세포인 NCI-H69, 폐암세포인 LL/2 등 각종 암세포주에 세포증식 억제 실험 및 Sarcoma 180 세포를 주입한 동물실험을 통하여 입증하고자 한다.

실험 재료 및 방법

1. 실험 재료 및 추출물의 제조

본 실험에 사용된 한약재는 경희 한약 (Wonju, Korea)으로부터 구입하였다. 해암단 (HAD)은 와송, 의이인, 산두근, 산자고, 청피, 감초 각 80g과 삼릉, 봉출, 청호, 소회향, 현호 색, 향부자, 사인 각 40g으로 구성되었으며,

Table 1. The Prescription of Haeamdan (HAD)

처방약재		생약명	용량(g)
와송	瓦松	Orostachys japonicus	
의이인	薏苡仁	Coix lachryma-jobi	
산두근	山豆根	Sophora tonkinensis	
산자고	山慈姑	Cremastra variabilis	
청피	青皮	Citrus unshiu Markovich	
감초	甘草	Glycyrrhiza glabra	80
삼릉	三稜	Scirpus flaviatilis	
봉출	蓬朮	Curcuma zedoaria	
청호	青蒿	Artemisiae apiacea	
소회향	小回香	Foeniculum vulgare	
현호색	延胡索	Corydalis turtschaninovii	
향부자	香附子	Cyperus rotundus	
사인	砂仁	Amomum villosum	40

80% ethanol 2.5L을 넣고 100℃로 가열하여 2 시간 환류 추출을 2회 반복하였다. 이 추출액을 여과하여 감압농축기 (BUCHI Rotavapor R-220, Switzerland)로 농축한 후, Deep freezer (IlShin BioBase, Korea)를 사용하여 동결 건조하였으며, 수율은 9.6%였다.

2. in vitro 실험

1) 세포 배양

본 실험에 사용한 대장암세포인 LoVo, 유방 암세포인 MCF-7, 위암세포인 AGS, 복강암세포 인 Sarcoma 180, 백혈병 세포인 HL-60, 소세포 성폐암세포인 NCI-H69은 한국 세포주 은행에 서 분양을 받았으며, 10% FBS (Gibco, U.S.A.) 와 1% penicillin-streptomycin (Gibco, U.S.A.)를 첨가한 RPMI 배지 (Gibco, U.S.A.)에서 37℃, 5% CO₂ 농도의 incubator에 배양하였다. 폐암세

포인 LL/2는 Amercian Type Culure Collection (ATCC, USA)에서 구입하였으며, 10% FBS와 1% penicillin-streptomycin을 첨가한 DMEM배지 (ATCC, U.S.A.)에서 37℃, 5% CO₂ 농도의 incubator에 배양하였다.

2) 세포 독성 측정

세포 독성 측정 실험은 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT)의 환원정도를 측정하는 MTT assay 방법을 사용하 여 측정하였다. 각 세포주를 96 well plate에 2x10⁴ cells/well로 seeding 하였으며 24시간 배양 한 후, 시료를 0.1~1 mg/ml 농도로 처리하였 다. 48시간 동안 배양한 후, 각 well에 1 mg/ml 의 MTT 용액 (Sigma, U.S.A.)을 25 μl/ml씩 첨 가하여, 37℃, 5% CO₂농도의 incubator에서 4시 간 배양하였다. 배지를 제거하고 DMSO (dimethyl sulfoxide)를 50 µl/ml씩 첨가하여 생성된 불용성의 formazan 결정을 용해시킨 뒤 ELISA reader로 540 nm에서 흡광도를 측정하였다. 부유세포인 NCI-H69와 HL-60은 위와 동일한 방법으로 시료를 처리하였으며, EZ-cytox kit (Daeillab Service Co., LTD, Korea)를 사용하여 540 nm에서 흡광도를 측정하였다.

3. in vivo 실험

1) 실험동물

실험동물은 6주령 된 ICR male mouse (Samtaco Bio Korea, Osan)을 사용하였으며, 온도 22±2℃, 습도 60±10%, 12시간 light-dark cycle의 통제된 사육실에서 식이와 식수는 자유롭게 섭취하도록 하였고, 반입 후 7일 동안 적응시킨 후 실험에 사용하였다. 실험동물의 관리와 유지 및 모든 실험은 경희의료원 실험동물 윤리위원회의 승인 하에 실시되었으며 실험군에 따라 8마리씩 1군으로 분류하여 사용하였다.

2) Sarcoma-180 암세포를 이용한 수명연장효과

Sarcoma-180 암세포를 최종 농도가 1×10^{7} cells/ml이 되도록 암세포 부유액을 만들어 0.1 ml씩 복강에 주사하여 복수암을 유발하였다. 실험동물의 복강 내에 암세포를 주사하고 24시간이 경과한 후부터 실험종료시까지 대조군은 생리식염수를, 실험군은 해암단을 1g/kg 농도로,양성대조군군은 cyclophosphamide를 8mg/kg의 농도로 투여하였다. 생리식염수와 해암단은 경구투여하였고 cyclophosphamide는 복강투여하여 4주간 생존여부를 관찰하였다.

4. 통계처리

본 실험에서 얻은 결과들은 유의성을 검정하기 위하여 분산분석 (ANOVA)을 행한 후 p < 0.05 수준에서 Newman-Keuls test를 실시하였으

며, 그 결과는 평균 (mean) ± 표준오차 (Standard error of measurement, S.E.M)로 표시하 였다.

결 과

1. 해암단의 암세포 독성에 대한 효과

해암단의 암세포 성장 억제효과를 알아보기위해 대장암세포인 LoVo, 유방암세포인 MCF-7, 위암세포인 AGS, 복강암세포인 Sarcoma 180, 백혈병 세포인 HL-60, 폐암세포인 NCI-H69와 LL/2을 대상으로 MTT assay를 실시하였다 (Table 1). 그 결과, 해암단 1 mg/ml 이하 농도에서 위의 모든 암세포주에 대해 50% 이상의암세포 성장 억제 효과가 있었으며, 암세포 중에서 특히, Sarcoma 180, HL-60, NCI-H69 및 LL/2에 대해 IC50 값이 0.50 mg/ml 이하로 강한억제 효과를 나타냈다.

Table 2. Cytotoxic Effect of HAD on Cancer cell lines

Cancer cell lines	IC ₅₀ (mg/ml)	
LoVo	0.71	
MCF-7	0.83	
AGS	0.82	
Sarcoma 180	0.42	
HL-60	0.33	
NCI-H69	0.33	
LL/2	0.21	

^{*} Cells were treated with various concentrations of HAD (0.1~1 mg/ml) for 2 days and cytotoxicity was measured by MTT assay. Data are expressed as IC₅₀ (mg/ml), which is concentration that the cell growth was inhibited by 50%.

Group	Dose	Average survival days	Increase of survival time(%)
Control	-	17.5 ± 0.4	-
HAD	1 g/kg	$21.1\pm0.3^*$	20.6
Cyclophosphamide	8 mg/kg	$23.8 \pm 1.0^{***}$	36.0

Table. 3. Effect of HAD on the Lifespan of Mice Inoculated with Sarcoma 180 (i.p).

2. Sarcoma-180 수명연장효과

Sarcoma-180 암세포에 대한 항암효과를 측정 하기 위하여 mouse 복강에 sarcoma-180 암세포 를 주입하여 복수암을 유발시키고 4주간 생존 율을 조사한 결과는 다음과 같다 (Table 2). 생 리식염수를 투여한 대조군은 평균 17.5일에 폐 사하였으나, 해암단 1 g/kg 투여군에서는 평균 21.1일에 폐사하여 대조군에 비하여 생존일수가 유의적으로 상승하였으며 약 20.6%의 개선효과 를 나타내었다. 양성대조군인 cyclophosphamide 를 투여한 군에서는 평균 23.8일 생존함으로써 약 36.0%의 개선효과가 있었다.

고찰 및 결론

악성종양이란 생체조직의 일부가 과잉증식하 여 실질장기 및 조직에 비정상적으로 생장발육 함으로써 개체와 정상조직의 파괴를 야기하는 되는 한의학 용어가 있다기보다는 현재까지 임 상적인 관점에서 積聚, 噎膈, 反胃, 癥痂, 癭 瘤, 乳巖 등의 용어들이 종양의 일부 혹은 전 체 형태들을 서술하고 있는 것으로 인식되고 있다. 또한 이들은 공통적으로 痰과 瘀血이 停 留함으로써 생겨나는 질병으로 파악되고 있으 며 그 치법의 요체를 扶正配本法과 攻邪法을 기본으로 하였다.10) 그러나 등장하는 처방들이

현대적인 관점에서 서술하는 종양을 억제한다 고 치환하여 파악될 수 있는지 여부와 그 기전 에 대하여 현재까지 다양한 관점에서 각종 연 구가 이루어지고 있는 실정이다.

반면 해암환은 두 가지 관점에서 이전의 연 구와 구별된다고 할 수 있다. 첫번째로는 일반 적인 한의학 처방들과 달리 40 년 정도의 임상 경험을 바탕으로 창방한 것으로 파악되고 있다 는 점이고, 두번째는 암의 통용방으로 투여된다 고 명확하게 서술하고 있어 현대적인 악성종양 의 질병과 병기를 인식하고 그를 치료하기 위 한 목적으로 투여한 처방이라는 점이다.

원래의 해암환은 山豆根, 薏苡仁, 天龍, 山 慈姑, 瓦松, 神草, 青皮, 金銀花, 穿山甲, 甘 草, 菱實, 三稜, 蓬朮, 乳香, 沒藥, 川鳥, 雄黃, 乾漆, 小回香, 巴豆, 呂宋果, 輕粉, 露蜂房, 神妙, 麝香, 延胡索, 香附子, 砂仁이 들어가는 처방이지만 몇 가지 약재는 CITES 조약에 의거 하여 현재 사용할 수가 없는 관계로 처방 배합 을 조절하여 본 연구에 사용되었다. 따라서 이 해암환 가감방에 대한 근거보다는 구성된 개별 한약재 혹은 그 한약재의 분획 추출물의 성분 보고들을 근거로 활용하여 종양억제 효과의 가 능성을 모색하고자 하였다.

와송은 만성 골수성 백혈병, 대장암, 전립선 암세포를 비롯한 in vitro 및 동물실험 모델에서 비장 및 흉선세포 생존율을 증가시키고 세포사 멸사를 촉진하며 혈관신생을 억제하고 항산화

^{*} Survival of each group was observed daily. Data are expressed as mean ± SEM (*p < 0.05, ***p < 0.001 compared to control

효과 및 암세포의 생육저해능이 있는 것으로 알려져 있다. 이11)는 복합처방으로 사인과 함께 활용한 보고를 하기도 하였다.12),13),14),15),16)

의이인은 대식세포를 활성화시키고 NK 세포 의 활성도를 증가시키는 것으로 알려져 있으며 산두근은 체액성 면역억제를 시키면서도 NK세 포나 대식세포의 탐식능을 유의하게 증가시키 는 것으로 알려져 있다.17) 삼릉은 부인암을 위 주로 유방암 세포의 성장 억제 및 자궁경부암 의 세포자멸사, 자궁근종의 증식 억제 등의 효 과를 보이며,18),19) 봉출은 흑색종의 폐전이 모 델에서 증식억제 효과가 있었다.20) 청호는 자궁 경부상피암 세포 및 위암세포에서 증식억제 효 과의 보고가 있었으며,21) 현호색은 간암세포 및 자궁근종 세포에 대하여 세포자멸사를 유도하 는 것으로 나타났다.22),23)

따라서 해암단이 실제로 항암활성을 가진 복 합처방일 가능성이 있다고 사료되어 본 연구에 서는 그 세포독성 및 세포자멸사 효과를 탐색 하고 종양억제 및 생존기간 연장의 효과가 있 는지 확인하고자 실험을 시행하였다. 그 결과 LoVo, MCF-7, AGS, Sarcoma 180, HL-60, NCI-H69, LL/2 세포주 중 HL-60, NCI-H69, LL/2 세포주에서 IC₅₀ 값 0.50 mg/ml 이하의 강 한 종양세포 증식억제 효과가 있었다. 그러나 이 세포독성이 어떤 경로를 통한 것인지에 대 하여 추후에 후속 연구를 통한 뒷받침이 되어 야 할 것으로 판단된다.

생쥐의 복강에 Sarcoma 180을 투여하여 복수 암을 유발시킨 후 약물을 투여하여 4주간 생존 율을 조사한 실험에서는 해암단 투여군은 생리 식염수 투여 대조군보다 평균 3.6일 생존을 연 장하여 통계학적으로 유의한 개선효과를 보였 으나 양성 대조군인 cyclophosphamide 대조군과 비교하였을 때는 유의한 생존 연장효과를 보여 주지 못하였다. 해암단의 효과가 용량의존적으 로 증가하는 지에 대하여 연구된 바가 없으나 해암단의 생존 연장 효과에 대하여 금번에 밝

혀진 백혈병. 소세포성 및 비소세포성 폐암을 위주로 하여 인체 안전성 및 종양억제 능력의 유효성을 추가 검증하기 위한 연구가 진행될 가치가 있을 것으로 사료된다.

참고문헌

- 1. 중앙암등록본부, 2012년 국가암등록통계, 2014.12.23.
- 2. Gandhi V, Mehta K, Grover R, Pathak S, Aggarwal BB. Multi-targeted approach to treatment of cancer, p. 19-56, USA. Springer Verlag. 2014.
- 3. 박근형, 김소영, 채희정. 항암소재의 발굴 을 위한 한방소재의 선별. *한국생물공학* 회지.2007;22(3):139-45.
- 4. 김은해, 은영아, 강봉주, 성현제, 박갑주. 한약처방제의 인체 위암 세포주에 대한 세포독성 효과에 관한 연구. 생약학회지. 1997;28(4):233-8.
- 5. Liu Y, Xu Y, Ji W, Li X, Sun B, Gao Q, et al. Anti-tumor activities of matrine and oxymatrine: literature review. Tumour Biol. 2014;35(6):5111-9.
- 6. 차관배, 김윤식, 유호룡, 조현경, 오연선, 설인찬. 오수유 약침의 항암효과에 대한 실험적 연구, *동의생리병리학회지.* 2006;20 (5):1261-70.
- 7. 김창헌, 김인성. 한의양방선. p. 563. 전 주. 계림사. 1995.
- 8. 배성식. 암보감. p. 142. 서울. 지식공작소.
- 9. 서울대학교 의과대학. 종양학, p.1-5, 43-93, 서울. 서울대학교 출판부. 1996.
- 10. 박명애, 최원영. 적취에 관한 문헌적 고 찰. *대한동의병리학회지.* 1997;11(1):90-9.
- 11. 이수정, 신정혜, 강재란, 황초롱, 성낙주,

- 와송과 한약재 복합물의 in vitro 생리활성 평 가. *한국식품영양과학회지*. 2012;41(3):295-301.
- 12. 윤경수, 김영철, 이장훈, 우홍정, 와송이 만성 골수성 백혈병 세포주(K562)에서 세포사멸에 미치는 영향. 대한한방내과학 회지. 2006;27(1):166-77.
- 13. 김재용, 정은정, 원영선, 이주혜, 신동영, 서권일. 인체 대장암 세포주 SW480에서 재배 와송의 세포 사멸 유도 효과. 식품 *과학회지.* 2012;44(3):317-23.
- 14. 손승현, 박희수. 와송 약침이 mouse의 간 전이 암모델에 미치는 영향. 대한침구학 회지. 2006;23(6):61-76.
- 15. 권진, 한광수. 와송 추출물이 면역체계에 미치는 영향. 한국약용작물학회지. 2004;12 (4):315-20.
- 16. 김지권, 김영철, 이장훈, 우홍정. 인진, 울 금, 상기생, 와송이 HepG2 cell의 혈관생 성인자 발현에 미치는 영향. 대한한방내 *과학회지*. 2007;28(1):149-65.
- 17. 송봉근. 수종 한약재가 면역 반응에 미치 는 영향. *대한한의학회지*. 1997;18(2):43-57.
- 18. 류갑순, 이진무, 이창훈, 장준복, 이경섭.

- 자궁경부암과 유방암에 대한 삼릉의 세 포자멸사 연구. 대한한방부인과학회지. 2011;24(3):1-13.
- 19. 박창건, 백승희, 김동철, 삼릉이 자궁근종 세포의 증식억제와 세포자멸사 관련 유 전자 발현에 미치는 영향. 대한한방부인 과학회지. 2006;19(2):199-213.
- 20. 황재철, 김미랑, 정영재, 이영자, 서운교, 정운석. B16 흑색종 세포의 폐전이에 대 한 봉출의 억제효과. 대한한의학회지. 2005;26(1):1-10.
- 21. 류지현, 이수정, 김미주, 신정혜, 강신권, 조계만 외. 개똥쑥의 항산화 및 항암활성 과 기능성 물질의 탐색. *한국식품영양과* 학회지. 2011;40(4):509-16.
- 22. 이희재, 백승희, 김동철. 현호색이 자궁근 종세포의 증식억제와 apoptosis 관련 유전 자 발현에 미치는 영향. *대한한방부인과* 학회지. 2006:19(2):214-25.
- 23. 오명택, 엄현섭, 지규용. 현호색이 인체 간암세포 증식억제 및 apoptosis 유발에 미치는 영향. *동의생리병리학회지*. 2007;21(6): 147-49.