• Title/Summary/Keyword: HF gas

Search Result 149, Processing Time 0.04 seconds

The Etch Characteristics of TiN Thin Film Surface in the CH4 Plasma (CH4 플라즈마에 따른 TiN 박막 표면의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.5
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$ and $HfO_2$) of TiN thin films in the $CH_4$/Ar inductively coupled plasma. The maximum etch rate of $274\;{\AA}/min$ for TiN thin films was obtained at $CH_4$(80%)/Ar(20%) gas mixing ratio. At the same time, the etch rate was measured as function of the etching parameters such as RF power, Bias power, and process pressure. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4$ containing plasmas.

Etching characteristics of ArF and EUV resists in dual-frequency superimposed capacitively coupled $CF_{4}/O_{2}/Ar$ and $CF_{4}/CHF_{3}/O_{2}$/Ar plasmas

  • Gwon, Bong-Su;Kim, Jin-Seong;Park, Yeong-Rok;An, Jeong-Ho;Mun, Hak-Gi;Jeong, Chang-Ryong;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung;Lee, Seong-Gwon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.252-253
    • /
    • 2009
  • In this study, the deformation and etch characteristics of ArF and EUV photoresists were compared in a dual frequency superimposed capacitively coupled plasma (DFS-CCP) etcher systems using $CF_{4}/O_{2}/Ar$ and $CF_{4}/CHF_{3}/O_{2}/Ar$ mixture gas chemistry which are typically used for BARC open and $Si_{3}N_{4}$ teching chemistry, respectively. Etch rate of the resists tend to increase with low-frequency source power ($P_{LF}$) and high-frequency source ($f_{HF}$). The etch rate of ArF resist was hgither than that of EUV resist.

  • PDF

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF

Growth of Vertically Aligned Carbon Nanotubes on Co-Ni Alloy Metal (Co-Ni 합금위에서 수직방향으로 정렬된 탄소나노튜브의 성장)

  • Ryu, Jae-Eun;Lee, Cheol-Jin;Lee, Tae-Jae;Son, Gyeong-Hui;Sin, Dong-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.451-454
    • /
    • 2000
  • We have grown vertically aligned carbon nanotubes in a large area of Co-Ni codeposited Si substrates by the thermal CVD usign $C_2H_2$ gas. Since the discovery of carbon nanotubes, growth of carbon nanotubes has been achieved by several methods such as laser vaporization, arc discharge, and pyrolysis. In particular, growth of vertically aligned nanotubes is important to flat panel display applications. Recently, vertically aligned carbon nanotubes have been grown on glass by PECVD. Aligned carbon nanotubes can be also grown on mesoporous silica and Fe patterned porous silicon using CVD. In this paper, we demonstrate that carbon nanotubes can be vertically aligned on catalyzed Si substrate when the domain density of catalytic particles reaches a certain value. We suggest that steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically and each nonotubes are grown in bundle.

  • PDF

Improvement of Sealing Property of Electrostatic Chuck by Applying Polysilazane Sealant (폴리실라잔계 실란트를 이용한 정전척 실링특성 향상 연구)

  • Choi, Jaeyoung;Park, Hyunsu;Son, Min Kyu;Jeong, Chang-oh;Kim, Woo-Byoung
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.567-574
    • /
    • 2016
  • We have analyzed chemical properties of polysiloxane and polysilazane films, respectively, as sealing materials for electrostatic chuck (ESC) and have investigated the possibility of polysilazane as an alternative sealant to polysiloxane. It has been revealed that Si-O with organic bonding ($Si-CH_3$) existed in polysiloxane films compared to only pure Si-O bonding in polysilazane films. The sealing property of polysilazane has been found outstanding even in a short time of application. In the polysiloxane films containing $H_2O$, pin holes have been found possibly due to $CO_2$ gas evolution, and low adhesion with Si substrate has been observed after heat stress test in connection with the existence of organic bonding. After acid resistance test in 0.5 vol.% HF, 68 wt.% $HNO_3$, and 37 wt.% HCl solution, polyilazane films have shown a longer survival times. Compared to the conventional polysiloxane sealant, polysilazane is expected as a new sealing material because of good thermal and chemical stability.

Conformational Preference of Pseudo-Proline Dipeptide in the Gas Phase and Solutions

  • Park, Hae-Sook;Kang, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.74-74
    • /
    • 2003
  • We report here the results on N-acetyl-N'-methylamide of oxazolidine (Ac-Oxa-NHMe) calculated using the ab initio molecular orbital method with the self-consistent reaction field (SCRF) theory at the HF level of theory with the 6-3l+G(d) basis set. The displacement of the $\square$-CH$_2$ group in proline ring by oxygen atom has affected the structure of proline, cis$\^$∼/ trans equilibrium, and rotational barrier. The up-puckered structure is found to be prevalent for the trans conformers of the Oxa amide. The higher cis populations of the Oxa amide can be interpreted due to the longer distance between the acetyl methyl group and the 5-methylene group of the ring for the trans conformer of the Oxa amide than that of the Pro amide. The changes in charge of the prolyl nitrogen and the decrease in electron overlap of the C$\^$∼/ N bond for TS structures seem to play a role in lowering rotational barriers of the Oxa amide compared to that of the Pro amide. The calculated preferences for cis conformers in the order of Oxa > Pro amides and for trans-to-cis rotational barriers in the order of Pro > Oxa amide in water are consistent with experimental results on Oxa-containing peptides. The pertinent distance between the prolyl nitrogen and the N$\^$∼/ H amide group to form a hydrogen bond might indicate that this intramolecular hydrogen bond could contribute in stabilizing the TS structures of Oxa and Pro amides and play a role in prolyl isomerization.

  • PDF

Plating of Cu layer with the aid of organic film on Si-wafer (유기박막을 이용한 Si기판상의 구리피복층 형성에 관한 연구)

  • Park Ji-hwan;Park So-yeon;Lee Jong-kwon;Song Tae-hwa;Ryoo Kun-kul;Lee Yoon-bae;Lee Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.458-461
    • /
    • 2004
  • In order to improve the adhesion properties of copper, MPS(3-mercaptopropyltrimethoxysilane) organic film were employed. The plasma pretreatment in pure He or $He/O_{2}$ mixed gas environment greatly increased adhesion force. Adhesion force was measured by scratch test with nano indenter. Microstructures and surface roughness were observed with scanning electron microscope(SEM). The characteristics of MPS layer for pretreatment were studied with flourier transform infrared spectroscope(FT-IR) and contact angle tester. The heighest adhesion was achieved in the specimen pretreated with mixed plasma and NPS coating, which was 56mN. Other specimen showed lower value by $20{\%}$ to $30{\%}$. The roughness of substrate was not affected by the bonding strength of copper plating.

  • PDF

Effect of process parameters on the recovery of thorium tetrafluoride prepared by hydrofluorination of thorium oxide, and their optimization

  • Kumar, Raj;Gupta, Sonal;Wajhal, Sourabh;Satpati, S.K.;Sahu, M.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1560-1569
    • /
    • 2022
  • Liquid fueled molten salt reactors (MSRs) have seen renewed interest because of their inherent safety features, higher thermal efficiency and potential for efficient thorium utilisation for power generation. Thorium fluoride is one of the salts used in liquid fueled MSRs employing Th-U cycle. In the present study, ThF4 was prepared by hydro-fluorination of ThO2 using anhydrous HF gas. Process parameters viz. bed depth, hydrofluorination time and hydrofluorination temperature, were optimized for the preparation of ThF4 in a static bed reactor setup. The products were characterized with X-Ray diffraction and experimental conditions for complete conversion to ThF4 were established which also corroborated with the yield values. Hydrofluorination of ThO2 at 450 ℃ for half an hour at a bed depth of 6 mm gave the best result, with a yield of about 99.36% ThF4. No unconverted oxide or any other impurity was observed. Rietveld refinement was performed on the XRD data of this ThF4, and Chi2 value of 3.54 indicated good agreement between observed and calculated profiles.

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs) (과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향)

  • Park, Hyun-Woo;Cha, Woo Byoung;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.