• 제목/요약/키워드: HEK 293

검색결과 271건 처리시간 0.023초

(E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone displays suppression of inflammatory responses via inhibition of Src, Syk, and NF-κB

  • Kim, Yong;Jeong, Eun Jeong;Han Lee, In-Sook;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.91-99
    • /
    • 2016
  • (E)-3-(3-methoxyphenyl)-1-(2-pyrrolyl)-2-propenone (MPP) is an aldol condensation product resulting from pyrrole-2-carbaldehyde and m- and p- substituted acetophenones. However, its biological activity has not yet been evaluated. Since it has been reported that some propenone-type compounds display anti-inflammatory activity, we investigated whether MPP could negatively modulate inflammatory responses. To do this, we employed lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cells and examined the inhibitory levels of nitric oxide (NO) production and transcriptional activation, as well as the target proteins involved in the inflammatory signaling cascade. Interestingly, MPP was found to reduce the production of NO in LPS-treated RAW264.7 cells, without causing cytotoxicity. Moreover, this compound suppressed the mRNA levels of inflammatory genes, such as inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$. Using luciferase reporter gene assays performed in HEK293 cells and immunoblotting analysis with nuclear protein fractions, we determined that MPP reduced the transcriptional activation of nuclear factor (NF)-${\kappa}B$. Furthermore, the activation of a series of upstream signals for NF-${\kappa}B$ activation, composed of Src, Syk, Akt, and $I{\kappa}B{\alpha}$, were also blocked by this compound. It was confirmed that MPP was able to suppress autophosphorylation of overexpressed Src and Syk in HEK293 cells. Therefore, these results suggest that MPP can function as an anti-inflammatory drug with NF-${\kappa}B$ inhibitory properties via the suppression of Src and Syk.

Antibody 제작을 위한 human serine palmitoyltransferase 유전자의 발현 (Expression of Human Serine Palmitoyltransferase Genes for Antibody Development)

  • 김희숙
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.315-319
    • /
    • 2004
  • 사람의 serine palmitoyltransferase(SPT, EC 2.3.1.50)에 대한 항체를 제작하기 위하여 E. coli발현 vector인 pRset vector에 SPTLC1 및 SPTLC2 유전자를 subcloning하고 BL21 (DE3)pLys cell에 발현시켰다. 포유동물의 SPT는 원핵세포의 SPT homodimer와는 달리 SPTLC1 및 SPTLC2 2개의 sub-unit로 된 heterodimer이다. Human embryo kidney cell인 HEK293 cell의 total RNA로부터 RT-PCR을 행하여 cDNA library를 얻은 다음 SPTLC1 및 SPTLC2의 특이적인 primer 들을 이용하여 PCR을 행하였다. SPTLC1 및 SPTLC2 DNA를 hexahistidine fusion 단백질을 발현시킬 수 있는 pRset vector에 cloning하여 pRsetB/SPTLC1 및 pRsetA/SPTLC2를 얻고 염기서열을 확인하였다. 재조합 plasmid를 발현세포인 BL21 cell에 형질전환시킨 다음 ampicillin 및 chroramphenicol 배지에서 선별하여 재조합세포를 얻었다. 1 mM IPTG로서 발현을 유도하였으며 세포 단백질을 SDS-PAGE로 분리한 다음 His-tag antibody로 western blotting을 행하여 SPTLC 및 SPTLC2가 발현되었음을 확인하였다.

Interaction of Microtubule-associated Protein 1B Light Chain(MAP1B-LC1) and p53 Represses Transcriptional Activity of p53

  • Kim, Jung-Woong;Lee, So-Youn;Jeong, Mi-Hee;Jang, Sang-Min;Song, Ki-Hyun;Kim, Chul-Hong;Kim, You-Jin;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • 제12권2호
    • /
    • pp.69-75
    • /
    • 2008
  • The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and can trigger apoptosis in many cell types including neurons. In this study, we have shown that Microtubule-associated protein 1B(MAP1B) light chain interacts with tumor suppressor p53. MAP1B is one of the major cytoskeletal proteins in the developing nervous system and essential in forming axons during elongation. We also demonstrate that both p53 and MAP1B-LC1 interact in the nucleus in HEK 293 cells. Indeed, we show that the MAP1B-LC1 negatively regulates p53-dependent transcriptional activity of a reporter containing the p21 promoter. Consequently, MAP1B light chain binds with p53 and their interaction leads to the inhibition of doxorubicin-induced apoptosis in HEK 293 cells. Furthermore, these examinations might be taken into consideration when knock-down of MAP1B-LC1 is used as a cancer therapeutic strategy to enhance p53's apoptotic activity in chemotherapy.

Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2

  • Yu, Tao;Yang, Yanyan;Kwak, Yi-Seong;Song, Gwan Gyu;Kim, Mi-Yeon;Rhee, Man Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.127-133
    • /
    • 2017
  • Background: Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng, a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. Methods: The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis $factor-{\alpha}/interferon-{\gamma}-treated$ synovial cells, and HEK293 cells transfected with various inducers of inflammation. Results: G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$. G-Rc also markedly suppressed the activation of TANK-binding kinase $1/I{\kappa}B$ kinase ${\varepsilon}/interferon$ regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. Conclusion: G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase $1/I{\kappa}B$ kinase ${\varepsilon}/interferon$ regulatory factor-3 and p38/ATF-2 signaling.

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja;Jeong, So-Hee;Lee, Shi-Eun;Hong, Sun-Woo;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1555-1560
    • /
    • 2010
  • Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Induction of Two Mammalian PER Proteins is Insufficient to Cause Phase Shifting of the Peripheral Circadian Clock

  • Lee, Joon-Woo;Cho, Sang-Gil;Cho, Jun-Hyung;Kim, Han-Gyu;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • 제9권3호
    • /
    • pp.153-160
    • /
    • 2005
  • Most living organisms exhibit the circadian rhythm in their physiology and behavior. Recent identification of several clock genes in mammals has led to the molecular understanding of how these components generate and maintain the circadian rhythm. Many reports have implicated the photic induction of either mPer1 or mPer2 in the hypothalamic region called the suprachiasmatic nucleus (SCN) to phase shift the brain clock. It is now established that peripheral tissues other than the brain also express these clock genes and that the clock machinery in these tissues work in a similar way to the SCN clock. To determine the role of the two canonical clock genes, mPer1 and mPer2, in the peripheral clock shift, stable HEK293EcR cell lines that can be induced and stably express these proteins were prepared. By regulating the expression of these proteins, it could be shown that induction of the clock genes, either mPer1 or mPer2 alone is not sufficient to cause clock phase shifting in these cells. Our real-time PCR analysis on these cells indicates that the induction of mPER proteins dampens the expression of the clock-specific transcription factor mBmal1. Altogether, our present data suggest that mPer1 and mPer2 may not function in clock shift or take part in differential roles on the peripheral circadian clock.

Effects of Excretory/Secretory Products from Clonorchis sinensis and the Carcinogen Dimethylnitrosamine on the Proliferation and Cell Cycle Modulation of Human Epithelial HEK293T Cells

  • Kim, Eun-Min;Kim, June-Sung;Choi, Min-Ho;Hong, Sung-Tae;Bae, Young-Mee
    • Parasites, Hosts and Diseases
    • /
    • 제46권3호
    • /
    • pp.127-132
    • /
    • 2008
  • Clonorchis sinensis is one of the most prevalent parasitic helminths in Korea. Although cholangiocarcinoma can be induced by C. sinensis infection, the underlying mechanism is not clearly understood. To assess the role of C. sinensis infection in carcinogenesis, an in vitro system was established using the human epithelial cell line HEK293T. In cells exposed to the excretory/secretory products (ESP) of C. sinensis and the carcinogen dimethylnitrosamine (DMN), cellular proliferation and the proportion of cells in the G2/M phase increased. Moreover, the expression of the cell cycle proteins E2F1, p-pRb, and cyclin B was dramatically increased when ESP and DMN were added together. Similarly, the transcription factor E2F1 showed its highest level of activity when ESP and DMN were added simultaneously. These findings indicate that DMN and ESP synergistically affect the regulation of cell cycle-related proteins. Our results suggest that exposure to C. sinensis and a small amount of a carcinogen such as DMN can promote carcinogenesis in the bile duct epithelium via uncontrolled cellular proliferation and the upregulation of cell cycle-related proteins.

Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner

  • Wijerathne, Tharaka Darshana;Kim, Ji Hyun;Kim, Min Ji;Kim, Chul Young;Chae, Mee Ree;Lee, Sung Won;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.381-392
    • /
    • 2019
  • Sperm function and male fertility are closely related to pH dependent $K^+$ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.

Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells

  • Heyeon, Baik;Jaiesoon, Cho
    • Animal Bioscience
    • /
    • 제36권2호
    • /
    • pp.315-321
    • /
    • 2023
  • Objective: The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. Methods: The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25℃, 37℃, and 55℃) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. Results: The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55℃. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. Conclusion: Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.

hERG 칼륨채널 활성도 변화에 따른 31종 한약처방의 심장독성 평가 (Cardiotoxicity assessment of 31 herbal formulae by activity of hERG potassium channel in HEK 293 cells)

  • 하혜경;진성은;이시온;김동현;서창섭;신현규
    • 대한한의학회지
    • /
    • 제43권1호
    • /
    • pp.33-41
    • /
    • 2022
  • Objectives: Drug-induced blockade of the human ether-à-go-go related gene (hERG) potassium ion channel causes acquired long QT syndrome, which is known to cause cardiac arrhythmias and be fatal. To establish safety evidence of herbal formulae, we evaluated the effects of 31 herbal formulae on hERG channel activity. Methods: The current through hERG channel was measured by changing the membrane voltage before and after treatment with 31 herbal formulae in HEK 293 cell overexpressing hERG channel using a whole-cell patch clamp system. The current-voltage curves and the activity curves were fitted, and the hERG activity and 50% inhibitory concentration (IC50) according to each herbal formula were calculated. Results: Chokyungjongok-tang, Oncheong-eum, and Cheongsangbangpung-tang strongly inhibited the hERG activity, with IC50 values of 67.67, 141.2, and 296.3 ㎍/mL, respectively. Yeonkyopaedok-san, Eunkyo-san, Ukgan-san gajinphibanha, Daegunjoong-tang (except Oryzae gluten), Insamyangyoung-tang, Banhahubak-tang, SokyungHwalhyul-tang, Jodeung-san, Hyeonggaeyeongyo-tang, and Bangkeehwangkee-tang weakly inhibited hERG activity, with IC50 values ranging from 400 to 1000 ㎍/mL. The other 18 herbal formulae showed very weak hERG activity inhibition of less than 50% at the highest concentration (1000 ㎍/mL). Conclusion: This study provided safety information on cardiotoxicity by cardiac arrhythmia risk assessment of herbal formulae, and is expected to be a reference data for predicting the safety and risk of herbal formulae.