Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells

  • Heyeon, Baik (Department of Animal Science and Technology, Konkuk University) ;
  • Jaiesoon, Cho (Department of Animal Science and Technology, Konkuk University)
  • Received : 2022.02.15
  • Accepted : 2022.06.13
  • Published : 2023.02.01


Objective: The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. Methods: The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25℃, 37℃, and 55℃) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. Results: The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55℃. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. Conclusion: Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), (2019R1F1A1043769).


  1. Kidd TJ, Gibson JS, Moss S, et al. Clonal complex Pseudomonas aeruginosa in horses. Vet Microbiol 2011;149:508-12.
  2. Poonsuk K, Chuanchuen R. Contribution of the MexXY multidrug efflux pump and other chromosomal mechanisms on aminoglycoside resistance in Pseudomonas aeruginosa isolates from canine and feline infections. J Vet Med Sci 2012;74:1575-82.
  3. Salomonsen CM, Themudo GE, Jelsbak L, et al. Typing of Pseudomonas aeruginosa from hemorrhagic pneumonia in mink (Neovison vison). Vet Microbiol 2013;163:103-9.
  4. Banerjee S, Batabyal K, Joardar SN, et al. Detection and characterization of pathogenic Pseudomonas aeruginosa from bovine subclinical mastitis in West Bengal, India. Vet World 2017;10:738-42.
  5. Gong Q, Ruan MD, Niu MF, Qin CL, Hou Y, Guo JZ. Immune efficacy of DNA vaccines based on oprL and oprF genes of Pseudomonas aeruginosa in chickens. Poult Sci 2018;97:4219-27.
  6. Coorens M, Banaschewski BJH, Baer BJ, et al. Killing of Pseudomonas aeruginosa by chicken cathelicidin-2 is immunogenically silent, preventing lung inflammation in vivo. Infect Immun 2017;85:e00546-17.
  7. Hassan WH, Ibrahim AMK, Shany SAS, Salam HSH. Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt. J Adv Vet Anim Res 2020;7:452-63.
  8. Balloy V, Verma A, Kuravi S, Si-Tahar M, Chignard M, Ramphal R. The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. J Infect Dis 2007;196:289-96.
  9. Zeng H, Carlson AQ, Guo Y, et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 2003;171:3668-74.
  10. Zhang J, Xu K, Ambati B, Yu FSX. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthalmol Vis Sci 2003;44:4247-54.
  11. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B: possible facilitation by the formation of a ternary complex with the grb2 adaptor protein. J Biol Chem 2000;275:4283-9.
  12. Kelly-Wintenberg K, South SL, Montie TC. Tyrosine phosphate in a- and b-type flagellins of Pseudomonas aeruginosa. J Bacteriol 1993;175:2458-61.
  13. Schenk G, Gahan LR, Carrington LE, et al. Phosphate forms an unusual tripodal complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proc Natl Acad Sci USA 2005;102:273-8.
  14. Zhang H, Ma Y, Yu JG. Theoretical studies on the mechanism of activation of phosphoprotein phosphatases and purple acid phosphatases suggest an evolutionary strategy to survive in acidic environments. J Biol Inorg Chem 2013;18:1019-26.
  15. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell 2009;139:468-84.
  16. Kelker MS, Page R, Peti W. Crystal structures of protein phosphatase-1 bound to nodularin-r and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J Mol Biol 2009;385:11-21.
  17. Zhang T, Yang H, Yang Z, et al. Sulfonated compounds bind with prostatic acid phosphatase (pap248-286) to inhibit the formation of amyloid fibrils. ChemistryOpen 2018;7:447-56.
  18. Kusudo T, Sakaki T, Inouye K. Purification and characterization of purple acid phosphatase PAP1 from dry powder of sweet potato. Biosci Biotechnol Biochem 2003;67:1609-11.
  19. Cendra MM, Christodoulides M, Hossain P. Signaling mediated by Toll-like receptor 5 sensing of Pseudomonas aeruginosa flagellin influences IL-1β and IL-18 production by primary fibroblasts derived from the human cornea. Front Cell Infect Microbiol 2017;7:130.
  20. Odumosu BT, Adeniyi BA, Chandra R. Analysis of integrons and associated gene cassettes in clinical isolates of multidrug resistant Pseudomonas aeruginosafrom Southwest Nigeria. Ann Clin Microbiol Antimicrob 2013;12:29.
  21. Faldynova M, Videnska P, Havlickova H, et al. Prevalence of antibiotic resistance genes in faecal samples from cattle, pigs and poultry. Vet Med 2013;58:298-304.
  22. Oddie GW, Schenk G, Angel NZ, et al. Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 2000;27:575-84.
  23. Bhadouria J, Singh AP, Mehra P, et al. Identification of purple acid phosphatases in chickpea and potential roles of CaPAP7 in seed phytate accumulation. Sci Rep 2017;7:11012.
  24. Jeon JH, Ahn KB, Kim SK, Im J, Yun CH, Han SH. Bacterial flagellin induces IL-6 expression in human basophils. Mol Immunol 2015;65:168-76.
  25. Schmeck B, Lorenz J, N'Guessan PD, et al. Histone acetylation and flagellin are essential for legionella pneumophila-induced cytokine expression. J Immunol 2008;181:940-7.
  26. Xu M, Xie Y, Jiang C, et al. Treponema pallidum flagellins elicit proinflammatory cytokines from human monocytes via TLR5 signaling pathway. Immunobiology 2017;222:709-18.
  27. Nakamoto K, Watanabe M, Sada M, et al. Pseudomonas aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in human bronchial epithelial cells: a potential mechanism for progression and exacerbation of COPD. Exp Lung Res 2019;45:255-66.
  28. Cereghetti GM, Stangherlin A, Martins de Brito O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci 2008;105:15803-8.
  29. Hayden MS, West AP, Ghosh S. NF-κB and the immune response. Oncogene 2006;25:6758-80.
  30. Jiang C, Xu M, Kuang X, et al. Treponema pallidum flagellins stimulate MMP-9 and MMP-13 expression via TLR5 and MAPK/NF-κB signaling pathways in human epidermal keratinocytes. Exp Cell Res 2017;361:46-55.
  31. Benedikz EK, Bailey D, Cook CNL, et al. Bacterial flagellin promotes viral entry via an NF-kB and toll like receptor 5 dependent pathway. Sci Rep 2019;9:7903.
  32. Xiao Y, Liu F, Yang J, et al. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell Mol Immunol 2015;12:729-42.
  33. Tallant T, Deb A, Kar N, et al. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-κB and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 2004;4:33.
  34. Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014;20:15650-6.
  35. Buddington RK, Sangild PT. Companion animals symposium: Development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J Anim Sci 2011;89:1506-19.