DOI QR코드

DOI QR Code

Evaluation of Toxicity and Gene Expression Changes Triggered by Quantum Dots

  • Dua, Pooja (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Jeong, So-Hee (Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials) ;
  • Lee, Shi-Eun (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Hong, Sun-Woo (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Kim, So-Youn (Department of Biomedical Engineering, Dongguk University) ;
  • Lee, Dong-Ki (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University)
  • Received : 2010.02.10
  • Accepted : 2010.04.13
  • Published : 2010.06.20

Abstract

Quantum dots (QDs) are extensively employed for biomedical research as a fluorescence reporter and their use for various labeling applications will continue to increase as they are preferred over conventional labeling methods for various reasons. However, concerns have been raised over the toxicity of these particles in the biological system. Till date no thorough investigation has been carried out to identify the molecular signatures of QD mediated toxicity. In this study we evaluated the toxicity of CdSe, $Cd_{1-x}Zn_xS$/ZnS and CdSe/ZnS quantum dots having different spectral properties (red, blue, green) using human embryonic kidney fibroblast cells (HEK293). Cell viability assay for both short and long duration exposure show concentration material dependent toxicity, in the order of CdSe > $Cd_{1-x}Zn_xS$/ZnS > CdSe/ZnS. Genome wide changes in the expression of genes upon QD exposure was also analyzed by wholegenome microarray. All the three QDs show increase in the expression of genes related to apoptosis, inflammation and response towards stress and wounding. Further comparison of coated versus uncoated CdSe QD-mediated cell death and molecular changes suggests that ZnS coating could reduce QD mediated cytotoxicity to some extent only.

Keywords

References

  1. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013-2016. https://doi.org/10.1126/science.281.5385.2013
  2. Danek, M. J., K. F.; Murray, C. B.; Bawendi, M. G. Chem. Mater. 1996, 8, 173-180. https://doi.org/10.1021/cm9503137
  3. Ki Bae, W.; Kwak, J.; Lim, J.; Lee, D.; Ki Nam, M.; Char, K.; Lee, C.; Lee, S. Nanotechnology 2009, 20, 75202. https://doi.org/10.1088/0957-4484/20/7/075202
  4. Tholouli, E.; Sweeney, E.; Barrow, E.; Clay, V.; Hoyland, J. A.; Byers, R. J. J. Pathol. 2008, 216, 275-285. https://doi.org/10.1002/path.2421
  5. Cui, B.; Wu, C.; Chen, L.; Ramirez, A.; Bearer, E. L.; Li, W. P.; Mobley, W. C.; Chu, S. Proc. Natl. Acad. Sci. USA 2007, 104, 13666-13671. https://doi.org/10.1073/pnas.0706192104
  6. Chan, W. C.; Nie, S. Science 1998, 281, 2016-2018. https://doi.org/10.1126/science.281.5385.2016
  7. Voura, E. B.; Jaiswal, J. K.; Mattoussi, H.; Simon, S. M. Nat. Med. 2004, 10, 993-998. https://doi.org/10.1038/nm1096
  8. Walling, M. A.; Novak, J. A.; Shepard, J. R. Int. J. Mol. Sci. 2009, 10, 441-491. https://doi.org/10.3390/ijms10020441
  9. Medintz, I. L.; Konnert, J. H.; Clapp, A. R.; Stanish, I.; Twigg, M. E.; Mattoussi, H.; Mauro, J. M.; Deschamps, J. R. Proc. Natl. Acad. Sci. USA 2004, 101, 9612-9617. https://doi.org/10.1073/pnas.0403343101
  10. Duong, H. D.; Rhee, J. I. Talanta 2007, 73, 899-905. https://doi.org/10.1016/j.talanta.2007.05.011
  11. Kang, W. J.; Chae, J. R.; Cho, Y. L.; Lee, J. D.; Kim, S. Small 2009, 5, 2519-2522. https://doi.org/10.1002/smll.200900848
  12. Yaghini E, S. A. Nanomedicine (Lond) 2009, 3, 353-363.
  13. Rikans, L. E.; Yamano, T. J. Biochem. Mol. Toxicol. 2000, 14, 110-117. https://doi.org/10.1002/(SICI)1099-0461(2000)14:2<110::AID-JBT7>3.0.CO;2-J
  14. Li, M.; Xia, T.; Jiang, C. S.; Li, L. J.; Fu, J. L.; Zhou, Z. C. Toxicology 2003, 194, 19-33. https://doi.org/10.1016/S0300-483X(03)00327-5
  15. Derfus, A. M. C.; W. C. W.; Bhatia, S. N. Nano Lett. 2004, 4, 2163-2169. https://doi.org/10.1021/nl048715d
  16. Hoshino A, F. K.; Oku, T.; Suga, M.; Sasaki, Y.; Ohta, T. Nano Lett. 2004, 4, 2163-2169. https://doi.org/10.1021/nl048715d
  17. Chan, W. H.; Shiao, N. H.; Lu, P. Z. Toxicol. Lett. 2006, 167, 191-200. https://doi.org/10.1016/j.toxlet.2006.09.007
  18. Choi, A. O.; Cho, S. J.; Desbarats, J.; Lovric, J.; Maysinger, D. J. Nanobiotechnology 2007, 5, 1. https://doi.org/10.1186/1477-3155-5-1
  19. Lee, H. M.; Shin, D. M.; Song, H. M.; Yuk, J. M.; Lee, Z. W.; Lee, S. H.; Hwang, S. M.; Kim, J. M.; Lee, C. S.; Jo, E. K. Toxicol. Appl. Pharmacol. 2009, 238, 160-169. https://doi.org/10.1016/j.taap.2009.05.010
  20. Zhang, T.; Stilwell, J. L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P. A.; Gray, J. W.; Alivisatos, A. P.; Chen, F. F. Nano Lett. 2006, 6, 800-808. https://doi.org/10.1021/nl0603350
  21. Murray, C. B. N., D.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715. https://doi.org/10.1021/ja00072a025
  22. Bae, W. K. N., M. K.; Char, K.; Lee, S. Chem. Mater. 2008, 20, 5017-5323.
  23. Hines, M. A. G.-S., P. J. Phys. Chem. 1996, 100, 468-471. https://doi.org/10.1021/jp9530562
  24. Jeong, S.; Achermann, M.; Nanda, J.; Ivanov, S.; Klimov, V. I.; Hollingsworth, J. A. J. Am. Chem. Soc. 2005, 127, 10126-10127. https://doi.org/10.1021/ja042591p
  25. Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Nat. Biotechnol. 2003, 21, 41-46. https://doi.org/10.1038/nbt764
  26. Hong, S. W.; Hong, S. M.; Yoo, J. W.; Lee, Y. C.; Kim, S.; Lis, J. T.; Lee, D. K. Proc. Natl. Acad. Sci. USA 2009, 106, 14276-14280. https://doi.org/10.1073/pnas.0903642106
  27. Eisen, M. B.; Spellman, P. T.; Brown, P. O.; Botstein, D. Proc. Natl. Acad. Sci. USA 1998, 95, 14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  28. Dennis, G., Jr.; Sherman, B. T.; Hosack, D. A.; Yang, J.; Gao, W.; Lane, H. C.; Lempicki, R. A. Genome. Biol. 2003, 4, 3. https://doi.org/10.1186/gb-2003-4-5-p3
  29. Geys, J.; Nemmar, A.; Verbeken, E.; Smolders, E.; Ratoi, M.; Hoylaerts, M. F.; Nemery, B.; Hoet, P. H. Environ. Health Perspect 2008, 116, 1607-1613. https://doi.org/10.1289/ehp.11566
  30. Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. Small 2010, 6, 138-144. https://doi.org/10.1002/smll.200900626
  31. Lovric, J.; Bazzi, H. S.; Cuie, Y.; Fortin, G. R.; Winnik, F. M.; Maysinger, D. J. Mol. Med. 2005, 83, 377-385. https://doi.org/10.1007/s00109-004-0629-x
  32. Clift, M. J.; Rothen-Rutishauser, B.; Brown, D. M.; Duffin, R.; Donaldson, K.; Proudfoot, L.; Guy, K.; Stone, V. Toxicol. Appl. Pharmacol. 2008, 232, 418-427. https://doi.org/10.1016/j.taap.2008.06.009
  33. Park, E. J.; Yi, J.; Chung, K. H.; Ryu, D. Y.; Choi, J.; Park, K. Toxicol. Lett. 2008, 180, 222-229. https://doi.org/10.1016/j.toxlet.2008.06.869
  34. Klaassen, C. D.; Liu, J.; Diwan, B. A. Toxicol. Appl. Pharmacol. 2009, 238, 215-220. https://doi.org/10.1016/j.taap.2009.03.026
  35. Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Munoz Javier, A.; Gaub, H. E.; Stolzle, S.; Fertig, N.; Parak, W. J. Nano Lett. 2005, 5, 331-338. https://doi.org/10.1021/nl047996m
  36. Chen, Y.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. A.; Klimov, V. I.; Hollingsworth, J. A. J. Am. Chem. Soc. 2008, 130, 5026-5027. https://doi.org/10.1021/ja711379k

Cited by

  1. Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.657
  2. Meta-analysis of cellular toxicity for cadmium-containing quantum dots vol.11, pp.5, 2016, https://doi.org/10.1038/nnano.2015.338
  3. Bioinformatics analysis of gene expression profiling for identification of potential key genes among ischemic stroke vol.96, pp.34, 2017, https://doi.org/10.1097/MD.0000000000007564
  4. Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2010, https://doi.org/10.5012/bkcs.2011.32.1.53
  5. CdS Nanoparticles as Efficient Fluorescence Resonance Energy Transfer Donors for Various Organic Dyes in an Aqueous Solution vol.32, pp.10, 2010, https://doi.org/10.5012/bkcs.2011.32.10.3610
  6. The advances in applying inorganic fluorescent nanomaterials for the detection of hepatocellular carcinoma and other cancers vol.5, pp.97, 2015, https://doi.org/10.1039/c5ra14853g
  7. Bioinformatics-based analysis of the lncRNA–miRNA–mRNA and TF regulatory networks reveals functional genes in esophageal squamous cell carcinoma vol.40, pp.8, 2010, https://doi.org/10.1042/bsr20201727
  8. Transcriptome Profile Alterations with Carbon Nanotubes, Quantum Dots, and Silver Nanoparticles: A Review vol.12, pp.6, 2010, https://doi.org/10.3390/genes12060794