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Effect of sweet potato purple acid phosphatase on  
Pseudomonas aeruginosa flagellin-mediated  
inflammatory response in A549 cells

Heyeon Baik1 and Jaiesoon Cho1,* 

Objective: The study was conducted to investigate the dephosphorylation of Pseudomonas 
aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the 
effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung 
epithelial cell line. 
Methods: The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 
7, and 7.5) and temperature (25°C, 37°C, and 55°C) conditions. The release of interleukin-8 
(IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells 
(NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was 
measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 
5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or 
without sweet potato PAP was determined by the secreted alkaline phosphatase-based 
assay.
Results: The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 
5.5 and highest at 55°C. PA-FLA treated with the enzyme decreased IL-8 release from A549 
cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, 
PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells 
compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-
overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA 
treated with the enzyme strongly repressed the activation of TLR5.
Conclusion: Sweet potato PAP has the potential to be a new alternative agent against the 
increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive 
to control unwanted inflammatory responses caused by bacterial infections in animal 
husbandry.
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INTRODUCTION 

Pseudomonas aeruginosa is a gram-negative bacterium that is widely known to account 
for up to 10% of all human and animal infections and is one of the main causes of numerous 
diseases such as hemorrhagic pneumonia, mastitis, urinary tract infections, otitis, and 
endometritis in domestic animals, causing tremendous damage to animal husbandry [1-
3]. Not only does P. aeruginosa causes respiratory diseases in animals such as chickens 
and cattle, but it also causes mastitis in Holstein cows, and according to Banerjee et al [4], 
mastitis is a known cause of the loss of milk production, which makes it a major problem 
in the industry [4-7]. Infection with P. aeruginosa is stimulated by the microbial molecules 
called pathogen-associated molecular patterns (PAMPs) [8], and the bacterial flagellin is 
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a well-known PAMP, shown to upregulate pro-inflammatory 
mediators [9,10]. Also, as it is widely known that the activity 
and properties of certain proteins vary greatly depending on 
the phosphorylation of corresponding protein [11], dephos-
phorylating bacterial flagellin might lead to the regulation of 
inflammation in flagellin-mediated infections. Structurally, 
P. aeruginosa possesses an unusual surface filament-like fla-
gellum made up of post-translationally phosphorylated 
flagellin protein [12].
  Sweet potato purple acid phosphatase (PAP) is a binuclear 
metal-containing phosphatase, meaning that it has enzy-
matically active binuclear metal sites (Fe-Mn center) [13]. 
The structure of sweet potato PAP is very similar to that of 
enzyme called phosphoprotein phosphatases (PPPs), binu-
clear metallohydrolases that catalyze the dephosphorylation 
of threonine and serine remains [14]. While previous studies 
indicated that the catalytic cycle and mechanism of PPPs de-
pended upon its crystal structure [15,16], Zhang et al [17] 
reported the structural similarities of the active sites between 
PPPs and PAPs, suggesting that PAPs might share the cata-
lytic dephosphorylation mechanism with PPPs. Even though 
sweet potato PAP had shown phosphatase activity toward 
eight substrates such as ATP, ADP, AMP, NADP, glucose-
6-phosphate, sucrose-6-phophate, fructose-6-phosphate, 
and p-NPP, studies on the dephosphorylation of sweet pota-
to PAP toward relatively large phosphoproteins are limited 
[18]. The objective of this study was to investigate the de-
phosphorylation of bacterial flagellin protein by sweet potato 
PAP, and the effect of sweet potato PAP on the flagellin-me-
diated inflammatory response in the A549 lung epithelial 
cell line.

MATERIALS AND METHODS 

Reagents and cell culture
Purified flagellin from P. aeruginosa (PA FLA) encoded by 
the fliC gene [19], and sweet potato PAP were purchased 
from InvivoGen (Sandiego, CA, USA) and Sigma-Aldrich 
(St. Louis, MO, USA), respectively. Both were reconstituted 
in endotoxin-free water (Sigma-Aldrich, USA). PiColor 
Lock phosphate detection reagent was purchased from No-
vusbio (Centennial, CO, USA) while the Cymax Human 
IL-8 ELISA kit was obtained from Ab Frontier (Seoul, Korea). 
The nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) p65 (Total) InstantOne ELISA kit was pro-
cured from Invitrogen, Thermo-Fisher Scientific (Carlsbad, 
CA, USA). 
  The human alveolar carcinoma epithelial cell line (A549 
cells) was procured from American Type Culture Collection 
(ATCC CCL-185) and was maintained at F-12K Medium 
Ham’s F-12K (Kaighn’s) Medium (Gibco Life technologies; 
Gaithersburg, MD, USA) with 10% fetal bovine serum (Gibco 

Life technologies, USA) and 1% penicillin-streptomycin 
(Gibco Life technologies, USA) at 37°C in a 5% CO2 humidi-
fied incubator. 
  HEK-Blue hTLR5 cells (Invitrogen, Thermo-Fisher Scien-
tific, USA) were cultured at 37°C in Dulbecco modified 
eagle medium (DMEM; Gibco Life technologies, USA) with 
30 μg/mL of blasticidin (Invitrogen, Thermo-Fisher Scientific, 
USA) and 100 µg/mL of Zeocin (Invitrogen, Thermo-Fisher 
Scientific, USA).

Dephosphorylation of flagellin by sweet potato PAP at 
various pHs and temperatures
The phosphatase assay was performed at 37°C for 4 hours in 
a 1-mL reaction mixture containing 4 μL of the enzyme (46.4 
μg), 1 μg of PA FLA substrate, and 50 mM Na-acetate (pH 
4.0 and 5.5) or Bis-Tris (pH 7.0) or Tris-HCl (pH 7.5). The 
assay was also performed using the same protocol at condi-
tions of pH 5.5 (Na-acetate) for 4 hours at 25°C, 37°C, and 
55°C. The released inorganic phosphates (Pi) were read at 
optical density (OD) 635 nm, using PiColorLock detection 
kit (Novusbio; Centennial, CO, USA) following the manu-
facturer’s instructions. Enzyme activity was defined as the 
amount of enzyme required to liberate 1 nmol of inorganic 
phosphate per min under the assay conditions divided by 
mg of the protein. 

Effect of sweet potato PAP on flagellin-induced pro-
inflammatory mediators in A549 cells
A549 cells were initially seeded onto 96-well plates at a den-
sity of 1.5×104 cells per well and cultured to 80% confluency 
at 37°C in a 5% CO2 incubator. Various concentrations of 
FLA (0, 0.1, 1, 10, 100, 1,000 ng/mL) were treated with 1 μL 
of sweet potato PAP (11.6 μg) for 6 h. Then, enzyme-treated 
FLA and intact FLA at each concentration were applied to 
the cells for 12 h. The levels of interleukin-8 (IL-8) and NF-
κB were assayed at OD 450 nm using Cymax Human IL-8 
ELISA kit and NF-κB p65 (Total) InstantOne ELISA Kit, re-
spectively, according to the manufacturer’s instructions.

Effect of sweet potato PAP on flagellin-induced TLR5 
activation in TLR5 overexpressing HEK-293 cells
Human TLR5-overexpressing HEK-293 cells (HEK-Blue 
hTLR5 cells) were cultured in 96-well plates at an initial con-
centration of 1.5×104 cells per well until 80% confluency. 
Different concentrations of PA FLA (0, 0.1, 1, 10, 100, 1,000, 
5,000 ng/mL) were treated with 1 μL of sweet potato PAP 
(11.6 μg) for 6 hours. Then, enzyme treated FLA and intact 
FLA at each concentration were added to the cells. Activated 
toll-like receptor 5 (TLR5) was monitored at OD 620 nm using 
the secreted alkaline phosphatase-based assay according to 
the manufacturer’s protocols.
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Statistical analysis
Statistical analyses were conducted using one-way analysis 
of variance (PROC GLM; SAS 9.4, SAS Inst. Inc., Cary, NC, 
USA) to search for significant differences between the treat-
ments with Duncan’s multiple range test. The probability 
level used for statistical significance was p<0.05. The results 
were presented as the means and standard errors from three 
experiments. 

RESULTS 
 
Determination of PA FLA-dephosphorylating activity 
of sweet potato PAP 
As shown in Figure 1, the dephosphorylation of PA FLA by 
sweet potato PAP was more effective in acidic conditions 
(pH 4 and 5.5) compared to neutral conditions (pH 7 and 
7.5). Moreover, the phosphatase activity was highest at 55°C 
(Figure 2). 

Effect of sweet potato PAP on PA FLA-induced IL-8 
secretion in A549 cells
As shown in Figure 3, PA-FLA stimulated the release of IL-8 
in A549 cells. However, PA-FLA treated with sweet potato 
PAP inhibited the secretion of IL-8 in the cells, decreasing 
the IL-8 release to about 3.5-fold compared to that of intact 
PA-FLA, even at 1,000 ng/mL of substrate.

Effect of sweet potato PAP on PA FLA-induced NF-κB 
activation in A549 cells
Figure 4 showed that PA FLA dephosphorylated by sweet 

potato PAP repressed the activation of NF-κB in A549 cells 
compared to intact PA FLA, but there was no significant dif-
ference between the substrate levels.

Effect of sweet potato PAP on PA FLA-induced TLR5 
activation in TLR5 overexpressing HEK-293 cells
As shown in Figure 5, the activation of TLR5 by PA FLA was 
effective in TLR5-overexpressing HEK293 cells at substrate 
concentrations over 100 ng/mL and was the highest at a sub-
strate concentration of 5,000 ng/mL, where PA FLA treated 
with sweet potato PAP strongly repressed the activation of 
TLR5.

DISCUSSION 

P. aeruginosa infections cause animal diseases and pose a 
great threat to animal husbandry. The bacteria is responsible 
for various respiratory diseases, mastitis, otitis, and many 
others [1,3]. However, the frequently used antibiotics have 
allowed these bacteria to acquire antibiotic resistance [20,21]. 
Thus, the importance of finding new alternatives targeting 
antibiotic resistant bacteria like P. aeruginosa has grown. Al-
though flagellin had been reported to be a PAMP in P. 
aeruginosa, there are insufficient studies regarding the inac-
tivation of PA FLA.
  Several studies on the functions of mammalian PAP 
have already been conducted and suggested that PAP was 
involved in physiological events like osteoclastic bone resorp-
tion and erythrophagocytosis through the dephosphorylation 
of certain proteins [22]. Nevertheless, a precise study on 

Figure 1. Dephosphorylation of PA FLA by sweet potato PAP in dif-
ferent pH conditions. The phosphatase assay was performed at 
37°C for 4 hours in a 1-mL reaction mixture containing 4 μL of the 
enzyme (46.4 μg), 1 μg of PA FLA substrate, and 50 mM Na-acetate 
(pH 4.0 and 5.5) or Bis-Tris (pH 7.0) or Tris-HCl (pH 7.5). Enzyme ac-
tivity was defined as the amount of enzyme required to liberate 1 
nmol of inorganic phosphate per min divided by mg of the protein. 
The data were expressed as the mean and standard errors from 
three experiments. PA FLA, Pseudomonas aeruginosa flagellin; PAP, 
purple acid phosphatase. a,b Means lacking common letters differ 
significantly (p<0.05).
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Figure 2. Dephosphorylation of PA FLA by sweet potato PAP in dif-
ferent temperatures. The phosphatase assay was performed in a 
1-mL reaction mixture containing 4 μL of the enzyme (46.4 μg) and 1 
μg of PA FLA substrate at pH 5.5 (Na-acetate) for 4 hours at 25°C, 
37°C, and 55°C. Enzyme activity was defined as the amount of en-
zyme required to liberate 1 nmol of inorganic phosphate per min di-
vided by mg of the protein. The data were expressed as the mean 
and standard errors from three experiments. PA FLA, Pseudomonas 
aeruginosa flagellin; PAP, purple acid phosphatase. a-c Means lacking 
common letters differ significantly (p<0.05).
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Figure 3. Effect of sweet potato PAP on PA FLA-induced IL-8 secretion in A549 cells. A549 cells were initially seeded onto 96-well plates at a den-
sity of 1.5×104 cells per well and cultured to 80% confluency at 37°C in a 5% CO2 incubator. Various concentrations of FLA (0, 0.1, 1, 10, 100, 1,000 
ng/mL) were treated with 1 μL of sweet potato PAP (11.6 μg) for 6 h. Then, enzyme-treated FLA and intact FLA at each concentration were ap-
plied to the cells for 12 h. The level of IL-8 was assayed at OD 450 nm using Cymax Human IL-8 ELISA kit. The data were expressed as the mean 
and standard errors from three experiments. PAP, purple acid phosphatase; PA FLA, Pseudomonas aeruginosa flagellin; IL-8, interleukin-8; OD, opti-
cal density; ELISA, enzyme-linked immunosorbent assay. a-d Means lacking common letters differ significantly (p<0.05).

21  

Figure 3.  396 
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Figure 4. Effect of sweet potato PAP on PA FLA-induced NF-κB activation in A549 cells. A549 cells were initially seeded onto 96-well plates at a 
density of 1.5×104 cells per well and cultured to 80% confluency at 37°C in a 5% CO2 incubator. Various concentrations of FLA (0, 0.1, 1, 10, 100, 
1,000 ng/mL) were treated with 1 μL of sweet potato PAP (11.6 μg) for 6 h. Then, enzyme-treated FLA and intact FLA at each concentration were 
applied to the cells for 12 h. The level of NF-κB was assayed at OD 450 nm using NF-κB p65 (Total) InstantOne ELISA Kit. The data were ex-
pressed as the mean and standard errors from three experiments. PAP, purple acid phosphatase; PA FLA, Pseudomonas aeruginosa flagellin; NF-
κB, nuclear factor kappa- light-chain-enhancer of activated B; OD, optical density; ELISA, enzyme-linked immunosorbent assay. a,b Means lacking 
common letters differ significantly (p<0.05).
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the dephosphorylating activity of sweet potato PAP with 
relatively high molecular weight substances like proteins 
has not yet been reported. In the present study, sweet potato 
PAP successfully exhibited phosphatase activity against PA 
FLA (Figures 1, 2), which was a novel finding. Moreover, 
sweet potato PAP was highly active at acidic pH range (4 to 
5.5) (Figure 1), which was compatible with the result of 
chickpea PAP (CaPAP7), verifying the typical property of 
acid phosphatase [23]. Previously, the phosphatase activity 
of sweet potato PAP for the substrate, p-nitrophenyl phos-
phate (pNPP) exhibited the highest activity at 50°C [18], 
which is almost similar to our result of 55°C for PA PLA 
(Figure 2). 
  Indeed, bacterial flagellins elicit pro-inflammatory cyto-
kines such as IL-6 and IL-8 in various cell types [24-27]. As 
shown in Figure 3, PA FLA provoked the secretion of the 
universal inflammatory marker IL-8 in A549 cells. However, 
treatment of the cells with every concentration of substrate 
dephosphorylated by sweet potato PAP reduced the secretion 
of IL-8, suggesting that the enzyme exerted anti-inflamma-
tory activity. To some extent, the dephosphorylation of 
flagellin appears to be related to dysfunction. For example, 
dephosphorylation of the profission Drp1 (dynamin-related 
protein 1) protein by the cytosolic phosphatase calcineurin 

led to the fragmentation of depolarized mitochondria dur-
ing the cell cycle, differentiation, and death [28].
  Moreover, PA FLA dephosphorylated by the enzyme re-
pressed the activation of NF-κB (Figure 4), which is widely 
known to mediate IL-8 gene expression [29]. Bacterial fla-
gellin provokes inflammation via stimulating the NF-κB 
pathway [30,31].
  TLRs regulate the innate immune response and contribute 
to enhancing antibacterial defenses in host cells [32]. Among 
the TLRs, TLR5 is well-known to recognize FLA on the bac-
terial cell surface, eliciting inflammatory signaling by activating 
the NF-κB pathway [31]. When a bacterial infection takes 
place, host cells over-produce TLR5 to defend against such 
attacks [32]. 
  As shown in Figure 5, intact PA FLA clearly induced the 
activation of TLR5 in TLR5- overexpressing HEK-293 cells 
at higher doses of more than 1,000 ng/mL, which was in 
good agreement with the previous result observed in 293T 
cells exposed to purified Salmonella typhimurium flagellin 
[33], but PA FLA dephosphorylated by sweet potato PAP re-
pressed it. Bacterial flagellins structurally possess two highly 
conserved N-terminal and C-terminal domains and one 
central hypervariable domain [32]. In the case of Salmonella 
enterica-derived flagellin, one variant with a deletion in the 

Figure 5. Effect of sweet potato PAP on PA FLA-induced TLR5 activation in HEK-Blue hTLR5 cells. HEK-Blue hTLR5 cells were cultured in 96-well 
plates at an initial concentration of 1.5×104 cells per well until 80% confluency. Different concentrations of PA FLA (0, 0.1, 1, 10, 100, 1,000, 5,000 
ng/mL) were treated with 1 μL of sweet potato PAP (11.6 μg) for 6 hours. Then, enzyme treated FLA and intact FLA at each concentration were 
added to the cells. Activated TLR5 was monitored at OD 620 nm using the SEAP-based assay. The data were expressed as the mean and stand-
ard errors from three experiments. PAP, purple acid phosphatase; PA FLA, Pseudomonas aeruginosa flagellin; TLR5, toll-like receptor 5; HEK-Blue 
hTLR5 cells, human TLR5-overexpressing HEK-293 cells; OD, optical density; SEAP, secreted alkaline phosphatase. a-d Means lacking common let-
ters differ significantly (p<0.05).
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N-terminus (FliCΔ1–180) failed to stimulate TLR5 [32]. 
Presumably, phosphotyrosine exists within the N-terminus 
of PA FLA and the dephosphorylation of the residue inhibit-
ed the interaction of PA FLA with TLR5 [12].
  Just as exogenous bovine intestinal alkaline phosphatase 
has been extensively applied to clinical human trials [34], 
the conception of the administration of sweet potato PAP by 
oral delivery or by intravenous injection can be positively 
suggested to maintain good health for farm and companion 
animals against the gastrointestinal inflammatory disorder 
and antibiotics-related infections [34,35]. In conclusion, sweet 
potato PAP has the potential to be a new alternative agent 
against the increased antibiotic resistance of P. aeruginosa 
and may be a new conceptual feed additive to control un-
wanted inflammatory responses caused by bacterial infections 
in animal husbandry.
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