• 제목/요약/키워드: HEAT SINK

검색결과 561건 처리시간 0.028초

열전소자를 이용한 배수형 전자제습기 개발 (Development of a Drain-Type Electronic Dehumidifier Using Thermoelectric Element)

  • 강덕홍;김성완;김기홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3524-3528
    • /
    • 2007
  • In this study, the Peltier effect was applied to eliminate moistures in the air enclosed by a cabinet. We have developed the new electronic dehumidifier which has a new function of automatically evaporating the condensed water inner cabinet into the outside air. To obtain this function, the processes of dehumidification is that it condensed the moistures on the cold side heat sink and drained it into the hot side heat sink by the both gravitational and capillary forces and the droplets on the hot side heat sink surface was evaporated into the air outside the cabinet by the heat conducted through the hot side heat sink surface and the forced heat convection through the fan for cooling hot side heat sink. Compared to existing electronic dehumidifiers, this manufactured one showed a good performance that the electric power consumption for the same dehumidifying quantity was reduced by 50% compared with that of existing ones.

  • PDF

태양광 웨이퍼링 슬러리 재생 다공성 SiC 세라믹 히트싱크 개발에 관한 연구 (A Study on Development of Porous SiC Ceramic Heat Sink from Solar Wafering Slurry)

  • 안일용;이영림
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.2002-2008
    • /
    • 2012
  • 최근 들어 전자제품 소형화로 인한 방열의 중요성이 대두되고 있는 가운데 다양한 소재의 히트싱크가 사용되고 있다. 본 연구에서는 태양광에너지 소재산업에서 발생하는 슬러리로부터 SiC를 성공적으로 분리하여 다공성 세라믹 히트싱크를 개발하였고 알루미늄 히트싱크, 순수 SiC 히트싱크와 방열성능 비교실험을 통해 다공성 재생 SiC 세라믹 히트싱크의 방열성능을 검증하였다. 실험 결과, 다공성 재생 SiC는 알루미늄 히트싱크 대비 방열성능이 우수함을 확인하였는데 이는 미세기공으로 인한 전열면적 증가에 기인한다. 또한, 수치해석을 사용하여 미세기공이 방열성능에 미치는 영향을 대류열전달계수 증가로 정량화하였다.

고집광 태양광 모듈용 냉각 장치의 열성능에 대한 수치 해석적 연구 (Numerical Investigation on the Thermal Performance of a Cooling Device for a CPV Module)

  • 도규형;김태훈;한용식
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2015
  • In the present study, the effects of the heat spreader thickness and the heat sink size on the thermal performance of a cooling device for a concentrating photovoltaic (CPV) module were numerically investigated. Numerical simulation was conducted by using the simulation tool ICEPAK, commercial software based on the finite volume method. Numerical results were validated by comparing the existing experimental data. The thermal performance of a cooling device, which consisted of a heat spreader and a natural convective heat sink, was evaluated with varying the heat spreader thickness and the heat sink size. The geometric configuration of the natural convective heat sink, such as the fin height, the fin spacing, and the fin thickness, was optimized by using the existing correlation. The numerical results showed that the thermal performance of the cooling device increased as the heat spreader thickness or the heat sink size increased. Also, it was found that the spreading thermal resistance plays an important role in the thermal performance of the cooling device which has the localized heat source.

히트 싱크 부착 전자부품을 가진 통신시스템의 냉각성능 연구 (Cooling performance of an electronic system including electronic components mounted with heat sink)

  • 노홍구;이재헌
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.253-266
    • /
    • 1998
  • A numerical study on the cooling performance for electronic components mounted with heat sink in an electronic system has been performed. The model of electronic system consisted with lower and upper modules in which the electronic components mounted with heat sink were arrayed. To find better configuration under a given fan power for effective cooling, the cases called 'No heat sink','Both heat sinks','Lower heat sinks', and 'Upper heat sinks' were tested. The results showed that the cooling performance in 'Upper heat sinks' was the best among four cases.

이중 방열 구조를 갖는 GaAs 건 다이오드 제작 (Fabrication of GaAs Gunn Diodes With A Double Heat Sink)

  • 김미라;이진구;채연식;임현준;최재현;김완주
    • 대한전자공학회논문지SD
    • /
    • 제46권9호
    • /
    • pp.1-6
    • /
    • 2009
  • 본 논문에서는 음극 및 양극으로 동시에 열 방출을 수행할 수 있는 이중 방열 구조의 Gunn 다이오드를 제작하고 음극 방열 구조를 갖는 Gunn 다이오드와 그 특성 차이를 비교하였다. 제작된 다이오드의 DC 특성 측정 결과, 단일 방열 구조의 경우에는 3 V의 문턱전압과 744 mA의 최대 전류 및 4.8 V의 항복 전압 특성을 나타내었고, 이중 방열 구조 다이오드는 2.5 V의 문턱전압, 778 mA의 최대 전류 및 5 V 이상의 항복전압 특성을 나타내었다.

다중 충돌 공기제트에서 발포 알루미늄 방열기의 방열 특성 실험 (An Experiment on Heat Dissipation from Aluminum foam Heat Sinks in an Air Multi-Jet Impingement)

  • 이명호;김서영;이관수
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1115-1122
    • /
    • 2002
  • The present experiment investigates the effects of pore density f of aluminum foam heat sinks, the jet-to-jet spacing X and the nozzle plate-to-target surface spacing H of 3$\times$3 square impinging arrays on the averaged Nusselt number. The performance of the aluminum foam heat sinks and the rectangular plate heat sink is evaluated in terms of the enhancement factor. /equation omitted/. The multiple impinging jet with X/d=4.0 displays higher Nusselt numbers than single impinging jet for 12.0$\leq$H/d$\leq$20.0. With the variation of the jet-to-jet spacing, the aluminum foam heat sink of 10 PPI show higher Nusselt numbers than the 20 and 40 PPI aluminum foam heat sinks. Further, the 10 PPI aluminum foam heat sink demonstrates 26% higher enhancement factor than the rectangular plate heat sink in the range of 7000$\leq$Re$\leq$11000.

경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구 (Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink)

  • 홍기호;송태호
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.

전자냉각용 히트파이프 히트싱크 개발 (Heat Pipe Heat Sink Development for Electronics Cooling)

  • 이기우;박기호;이석호;유성연
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.664-670
    • /
    • 2002
  • A heat sink (HS) system using heat pipes for electronics systems was studied. The experimental results indicate that a cooling capacity of up to 150w at an overall temperature difference of $50^{\circ}C$ can be attainable. The heat sink design program also showed that a computer simulation can predict the most of the parameters involved. To do so, however, the interior temperature distribution had to be verified by experimental results. The current simulation results were close to the experimental results in acceptable range. The simulation study showed that the design program can be a good tool to predict the effects of various parameters involved in the optimum design of the heat sink.

LED 프로젝터 방열용 히트싱크의 성능평가 (Performance Evaluation of Heat Sink for Cooling of LED Projector)

  • 이경용;최영석;전동순;김선창;손광은
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1167-1171
    • /
    • 2008
  • The flow and thermal performance of the skiving and louver fin type heat sinks for the cooling system of the small LED projector were experimentally evaluated. A small fan tester based on AMCA standards was used to control and measure the air flow rate into the heat sink. Three heat blocks were used to simulate the heat and light sources(red, green and blue) of the small LED projector. We measured the pressure drop, temperatures and input power at the specific air flow rate and discussed those results. As a result, it is found that the louver fin type heat sink has higher pressure drop and lower thermal resistance than the skiving type. From the comparison of the temperature of the heat block between skiving and louver fin type, the louver fin type heat sink was found to be more suitable for cooling the high power heat source than skiving type. The thermal performance of the fan-sink(louver fin type) system was discussed with the picture taken by a thermal video.

  • PDF

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.