• Title/Summary/Keyword: HDF cell

Search Result 54, Processing Time 0.022 seconds

The Flower Extract of Abelmoschus manihot (Linn.) Increases Cyclin D1 Expression and Activates Cell Proliferation

  • Park, Yea-In;Cha, Yeo-Eun;Jang, Minsu;Park, Rackhyun;Namkoong, Sim;Kwak, Jongbock;Jang, Ik-Soon;Park, Junsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1044-1050
    • /
    • 2020
  • Abelmoschus manihot (Linn.) is a medicinal herbal plant that is commonly used to treat chronic kidney disease and hepatitis. However, its effect on cell proliferation has not been clearly revealed. In this report, we sought to determine the effect of the flower extract of A. manihot (FA) on cell proliferation. Based on our findings, FA increased the proliferation of human diploid fibroblast (HDF) and HEK293 cells. Through cell cycle analysis, FA was found to increase the number of HDF cells in the S phase and G2/M phase. FA also increased the expression of cyclin D1 and enhanced the migration of HDF cells. By administering FA to HDF cells with ≥30 passages, a decrease in the number of senescence-associated β galactosidase-positive cells was observed, thereby indicating that FA can ameliorate cellular senescence. Collectively, our findings indicate that FA increases cyclin D1 expression and regulates cell proliferation.

The Effects of Paeonia Lactiflora Pallas on Inhibition of Oxygen Free Radical, Anti-inflammation and MMP-1 Inhibitory Activity (적작약 꽃 추출물의 활성산소 억제와 항염증 및 MMP-1 발현 억제능 효과에 관한 연구)

  • Leea, Jae-Nam;Kim, Young-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.797-806
    • /
    • 2018
  • This study attempted to investigate the effects of Paeonia Lactiflora Pallas (P. lactiflora) on the inhibition of oxygen free radical, anti-inflammation and MMP-1 inhibitory activity and examine its possibility as a functional cosmetic material. For test methods, the inhibition of oxygen free radical after measuring reactive oxygen species (ROS) in the cell, cytotoxicity assessment and anti-inflammation were measured, and MMP-1 inhibitory effects in the HDF cell were measured. According to the test, the inhibition of ROS was confirmed in RAW 264.7 and HDF cells. In terms of cytotoxicity assessment, 90% or higher cell viability was detected at $5/10{\mu}g/mL$ Paeonia Lactiflora Pallas extract while it was 80% or higher at other concentration levels in both RAW 264.7 and HDF cells. In addition, NO production was inhibited in the RAW 264.7 cell while MMP-1 was significantly inhibited in the HDF cell. The above results reveal a possibility of Paeonia Lactiflora Pallas extract as a functional cosmetic material after confirming the inhibition of ROS synthesis in the cell, antioxidant and anti-inflammatory effects by inhibiting NO synthesis, low toxicity on skin cells and anti-aging effect through MMP-1 inhibition.

The Effect of Magnolol on UVB-induced Inflammation Damage Control via the Nrf2-SOCS3-Jak2-STAT3 Pathway in Human Dermal Fibroblasts (마그놀롤의 HDF세포에서 Nrf2-SOCS3-Jak2-STAT3에 의한 UVB 유래 염증데미지 조절)

  • Nam, Young sun;Ji, Juree
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.867-876
    • /
    • 2020
  • This study investigated the repair of UVB-induced cell damage by magnolol. We performed a drug-repurposing screen, and, in the STAT3 reporter gene assay, magnolol was identified as a suppressor of STAT3 that improves the cell viability of HDF cells. HDF cells treated with IL-6, UVB, and IFNγ showed the highest expression of Jak2 and phosphorylated STAT3 (p-STAT3), and magnolol was able to decrease the expression of Jak2 and p-STAT3 in UVB-induced cells. Moreover, UVB-damaged cell growth increased significantly in correlation with both reactivation and with magnolol in a dose-dependent manner. Compared with AG490 (a Jak2 inhibitor) treatment of UVB-treated HDF cells, cell proliferation increased significantly. We confirmed that AG490 and magnolol reduced TNF-α concentrations, and Western blotting (protein level) showed decreases in Jak2 and p-STAT3 expression in only the magnolol-treated cells. The expression of Jak2, p-STAT3, and SOCS3 also increased only after treatment with magnolol. Cells were treated with magnolol and ML385 (an NRF2 inhibitor), and these secondary metabolites reduced cell proliferation and NRF2 expression. The amount of MMP9 was also increased by cotreatment with magnolol and ML385. Collectively, these results demonstrate the potential of magnolol for repairing cells after UVB-induced damage by regulating the expression of NRF2, SOCS3, Jak2, and STAT3.

Antioxidant and Cytotoxicity in Skin Cell of the Trichosanthis Cucumeroidis Radix Extract (쥐참외뿌리 추출물의 항산화 및 피부 세포에서의 세포 독성 연구)

  • You, Seon-Hee;Moon, Ji-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.417-422
    • /
    • 2022
  • We tried to check the antioxidant activity and toxicity of trichosanthis cucumeroidis radix extracts in skin cells, and check the possibility of their use as a functional material that can be effectively used on the skin. Total polyphenol and total flavonoid content, which are indicators of antioxidant activity of trichosanthis cucumeroidis radix extracts, were confirmed, and cytotoxicity was confirmed using Neutral red assay in the skin. As a result of the study, the content of total polyphenols and total flavonoids increased concentration-dependent. High survival rates in fibroblast HDF cells were identified, and cell survival rates were significantly lowered from 5 ㎍/mL in melanocytes B16F10 melanoma cells and inflammation-related macrophages RAW 264.7 cells. He results of this study are believed to be available as basic data for antioxidant activity of trichosanthis cucumeroidis radix extracts and skin cells.

In vitro anti-skin-aging effects of dried pomegranate concentrated powder

  • Lee, Dae-Geon;Choi, Beom-Rak;Ku, Sae-Kwang;Kang, Su-Jin;Park, Hye-Rim;Sung, Mi-Sun;Lee, Young-Joon;Park, Ki-Moon
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.109-123
    • /
    • 2018
  • Purpose : In this study, we intended to observe the anti-wrinkle and moisturizing effects of dried pomegranate juice concentration powder (PCP) using in vitro test. Materials and methods : Antioxidant effects of PCP were determined by free radical scavenging capacity (DPPH assay) and the cytotoxicity of PCP was examined in human keratinocyte (HaCaT) and human primary dermal fibroblast-neonatal (HDF) cells. To investigate the moisturizing effect of PCP, hyaluronan synthesis was examined in HaCaT cells. Activity of procollagen production were assessed in HDF cells and elastase inhibition properties of PCP were evaluated in cell free condition, to determine their anti-wrinkle effects. Metalloproteinase 1 (MMP-1) activity was also assessed following UVB irradiation, in the current in vitro experiment. Results : No PCP treatment related significant cytotoxic effects were demonstrated against to the both HDF and HaCaT cells. PCP showed favorable free radical scavenging activities in dose-dependent manner. In PCP-treated HaCaT cells, hyaluronan synthesis was non-significantly but markedly increased, and pro-collagen productions were significantly increased in HDF cells, at all three different concentrations (0.25, 0.75 and 1 mg/ml), and elastase inhibitory activities were observed by PCP treatment. A significant decrease in UVB-induced MMP-1 activity was also observed in 1 mg/ml PCP-treated HDF cells as compared to those of UVB-exposed cells. Conclusions : Taken together, these results suggest that PCP has favorable antioxidant, anti-wrinkle and moisturizing effects without meaningful cytotoxicity on HDF and HaCaT cell lines.

Antioxidative and Cytoprotective Effects of Annona muricata (Graviola) Extract for HDF Cell Damage Induced by Hydrogen Peroxide (H2O2에 의해 유도된 HDF 세포 손상에 대한 그라비올라 추출물의 항산화 및 세포 보호 효과)

  • Shin, Yun-Mi;Kim, You-Jeong;You, Seon-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.568-576
    • /
    • 2017
  • As interest in functionality and environmentally friendly cosmetics is growing in recent years, materials that use safe and effective plant extracts have been developed. Therefore, this study also attempted to check the possibility of the graviola extract, which is known to have various efficacy mainly as a health functional material as a functional cosmetic material. In order to find out the antioxidant activity of graviola, we measured total polyphenol, total flavonoid content and DPPH radical scavenging activity and measured the ROS activity inhibition effect and cytoprotective effect on oxidative stress by treating HDF with hydrogen peroxide cells at an appropriate concentration after checking cytotoxicity in HDF cells. Based on the results of this experiment, the graviola extract was found to contain as high as 26.6 mg(CA)/100g, 14.3 mg(Q)/100g of total polyphenol and flavonoid, which are the antioxidant indexes and to have the high radical scavenging activity. The cell survival rate of the HDF cells was measured, and as a result, no significant cytotoxicity was observed at all concentrations and the experiment was carried out at a concentration of $100{\mu}g/mL$ afterwards. Inhibition of ROS activity in HDF cells induced by hydrogen peroxide was measured and the concentration-dependent inhibition of ROS activity was found and the cell protection effect of graviola was measured after hydrogen peroxide was treated for 4, 24 and 48 hours. As a result, the cell protection effect as high as 89.92% was confirmed at a $25{\mu}g/mL$ concentration up to 24 hours. As these results show that the graviola extract has excellent antioxidant activity, almost no toxicity to HDF cells, an effective activity inhibitory effect on active oxygen generated by hydrogen peroxide and excellent cytoprotective effect, the possibility as various functional materials with antioxidant and cytoprotective effects was confirmed.

Photoprotective Effects of Minerals from Korean Indigenous Ores on UVA-irradiated Human Dermal Fibroblast

  • Kang, Dong-Kyu;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 2008
  • The photoprotective effects of minerals from Korean indigenous ores, consisting mainly of sericite, on UVA-irradiated human dermal fibroblast (HDF) were examined. Zymographic analysis showed that the treatment of the minerals significantly reduced the UVA-enhanced MMP-1 activity and mRNA level. The minerals also showed strong inhibitory effect on MMP-2 activity and mRNA expression. Moreover, the minerals were better than polyphenol in reducing MMP-1 and MMP-2 expressions. Notably, the minerals significantly enhanced collagen biosynthesis in the HDF. Inhibition of the elastase activity and protection against the oxidatively damaged HDF cell were also found in the presence of the minerals. Taken together, the ore minerals may be used as the potent photo-protective and anti-skin-aging ingredients which can prevent skin cell damage by UVA.

The Effect of Trigonella foenum-graceum L. (Fenugreek) Towards Collagen Type I Alpha 1 (COL1A1) and Collagen Type III Alpha 1 (COL3A1) on Postmenopausal Woman's Fibroblast

  • Yusharyahya, Shannaz Nadia;Bramono, Kusmarinah;Sutanto, Natalia Rania;Kusuma, Indra
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.208-214
    • /
    • 2019
  • Trigonella foenum-graceum L. (fenugreek) is a phytoestrogen, a nonsteroidal organic chemical compound from plants which has similar mechanism of action to sex hormone estradiol-$17{\beta}$. This study aims to assess the effectivity of fenugreek seeds extract on collagen type I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1) which are both decreased in aging skin and become worsen after menopause. This in vitro experimental study used old human dermal fibroblast from leftover tissue of blepharoplasty on a postmenopausal woman (old HDF). As a control of the fenugreek's ability to trigger collagen production, we used fibroblast from preputium (young HDF). Subsequent to fibroblast isolation and culture, toxicity test was conducted on both old and young HDF by measuring cell viability on fenugreek extract with the concentration of 5 mg/mL to $1.2{\mu}g/mL$ which will be tested on both HDF to examine COL1A1 and COL3A1 using ELISA, compared to no treatment and 5 nM estradiol. Old HDF showed a 4 times slower proliferation compared to young HDF (p<0.05). Toxicity test revealed fenugreek concentration of $0.5-2{\mu}g/mL$ was non-toxic to both old and young HDF. The most significant fenugreek concentration to increase COL1A1 and COL3A1 secretion was $2{\mu}g/mL$ (p<0.05).

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus (사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구)

  • Seo, Yu-Ri;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.

Promotion of 3T3 and HDF Cell Migration by Gelatin-modified Fibroin Microspheres

  • Se Change Kwon;Won Hur
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.186-191
    • /
    • 2023
  • The goal of this study was to use gelatin to modify the surface of fibroin microspheres to enhance their biofunctionality for tissue engineering and regenerative medicine applications. Three different methods were used for the modification: coating, incorporation, and covalent bonding. Wound-healing assays demonstrated that gelatin modification of fibroin microspheres enhances 3T3 and HDF cell migration. Although the level of gelatin coverage varied depending on the method used, there was no significant difference between the modified microspheres. The gelatin-modified microspheres also increased the migration velocity of individual 3T3 cells. The results suggest that gelatin modification of fibroin microspheres is a promising approach for developing functional biomaterials with enhanced biological properties. Further optimization of gelatin modification is necessary to maximize the biofunctionality of fibroin microspheres.