• Title/Summary/Keyword: HClO

Search Result 613, Processing Time 0.02 seconds

A Study on the Reduction of COD, Total Phosphorus and Nitrogen in Wastewater by Electrolysis and HClO Treatment (전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구)

  • Kim, Tae Kyeong;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • This study was conducted to develop a wastewater treatment system to remove organic matter, nitrate nitrogen, and phosphate ion in synthetic wastewater. COD was removed almost 100% by the oxidation reaction of HClO and nitrate nitrogen was reduced to ammonia by electrolysis treatment, but ammonia was reoxidized into nitrate nitrogen by HClO treatment. Ammonia was removed almost 100% by heating evaporation and no ammonia was reoxidized into nitrate by HClO treatment. Phosphate ion could be removed by precipitation treatment by forming metal complex according to pH. Through electrolysis treatment and HClO treatment, removal efficiencies of COD 99.5%, nitrogen 97.3% and phosphorus 91.5% were obtained.

Paper-Electrophoretic Separation of Ruthenium Chloro-Complexes (전기영동에 의한 루테늄 염화착물의 분리)

  • Byung-Hun Lee;Cheon-Hwey Cho
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.58-63
    • /
    • 1984
  • Paper electrophoretic separation of octahedrally bonded (Ruc $l_{6}$ )$^{3-}$ has been carried out by using the specially designed migration apparatus. The supporting electrolyte solutions are as follows: 0.1M-HCl $O_4$, 0.05 M-HCl+0.09M-KCl, 0.1M-HCl, 5$\times$10$^{-3}$ M-NTA, 0.01M-HCl, 0.01M-HCl $O_4$, 0.01M-citric acid, 0.01M-K $H_2$P $O_4$+0.01M-N $a_2$HP $O_4$, 0.05M-borax, 0.025M-N $a_2$C $O_3$+0.025M-NaHC $O_3$, 0.01M-N $a_3$P $O_4$, 0.01M-NaOH and 0.1 M-NaOH. The (Ruc $l_{6}$ )$^{3-}$ appears in 2 to 4 peaks and is found in several chemical species such as (RuCl ($H_2O$)$_{5}$ )$^{2+}$, cis and trans (RuC $l_2$($H_2O$)$_4$)$^{1+}$, (RuC $l_3$($H_2O$)$_3$)$^{0}$ , (RuC $l_4$($H_2O$)$_2$)$^{1-}$, (RuC $l_{5}$ ($H_2O$))$^{2-}$ and (RuC $l_{6}$ )$^{3-}$. The retention value has been found to be highest in the 0.025M-N $a_2$C $O_3$+0.025M-NaHC $O_3$ electrolyte solution.n.

  • PDF

Determination of the Levels of Bisphenol A Diglycidyl Ether (BADGE), Bisphenol F Diglycidyl Ether (BFDGE) and Their Reaction Products in Canned Foods Circulated at Korean Markets (캔 제품의 bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) 유도체 및 분해산물 분석법)

  • Kim, Hee-Yun;Lee, Jin-Sook;Cho, Min-Ja;Yang, Ji-Yeon;Baek, Ji-Yun;Cheong, So-Young;Choi, Sun-Hee;Kim, Young-Seon;Choi, Jae-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) were obtained by a polymerization reaction of epichlorohydrin (ECH) with bisphenol A (BPA) or bisphenol F (BPF). These compounds are commonly used as monomers or additives such as a polymerization stabilizer and a hydrochloric acid scavenger of epoxy resin, polyvinyl chloride (PVC)-containing organosols and polyester lacquers, that are applied to the internal surface of most canned foods to impart chemical resistance. The unreacted BADGE, BFDGE and their reaction products migrating from epoxy resin, PVC-containing organosol and/or polyester lacquer-based food packaging materials into the foods have recently become an issue of great concern because of increased customer demand for safety. This study was conducted to develop a rapid and sensitive simultaneous analysis method based on HPLC/FLD and HPLC/APCI-mass and to evaluate the concentration of BADGE, BFDGE and their metabolites, BADGE $H_2O$, BADGE $2H_2O$, BADGE HCl, BADGE 2HCl, BADGE HCl $H_2O$, BFDGE $H_2O$, BFDGE $2H_2O$, BFDGE HCl, BFDGE 2HCl and BFDGE HCl $H_2O$ for 133 canned food samples. The method provided a linearity of 0.9997-0.9999, a limit of detection of $0.01-0.13\;{\mu}g/mL$, a limit of quantitation of $0.03-0.44\;{\mu}g/mL$ and a recovery (%) of 85.64-118.18. The number of samples containing BADGE, BFDGE or their metabolites were: 28/133 (21.1%), with levels of 0.400-0.888 mg/kg being observed for aqueous foods (19/133) and 0.093-0.506 mg/kg being observed for oily foods (9/133).

Synthesis of CuO/ZnO Nanoparticles and Their Application for Photocatalytic Degradation of Lidocaine HCl by the Trial-and-error and Taguchi Methods

  • Giahi, M.;Badalpoor, N.;Habibi, S.;Taghavi, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2176-2182
    • /
    • 2013
  • A novel sol-gel method was implied to prepare CuO-doped ZnO nanoparticles. XRD and SEM techniques were used to characterize the CuO-doped ZnO sample. The photocatalytic degradation of Lidocaine HCl was investigated by two methods. The degradation was studied under different conditions such as the amount of photocatalyst, pH of the system, initial concentration, presence of electron acceptor, and presence of anions. The results showed that they strongly affected the photocatalytic degradation of Lidocaine HCl. The photodegradation efficiency of drug increased with the increase of the irradiation time. After 6 h irradiation with 400-W mercury lamp, about 93% removal of Lidocaine HCl was achieved. The degree of photodegradation obtained by Taguchi method compatible with the trial-and-error method showed reliable results.

Reaction morphology depending on the amounts of HCl and NH4OH and effect of pH on the preparation of TiO2 nanopowder (TiO2 나노분말 제조시 HCI과 NH4OH의 첨가량에 따른 반응양상과 pH의 영향)

  • Lim, Chang Sung;Oh, Won Chun
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The reaction morphology was investigated depending on the amounts of HCl and $NH_4OH$, and the effect of pH was studied on the preparation of $TiO_2$ nanopowders. $TiO_2$ nanopowder was prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCl and $NH_4OH$. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4OH$, the morphology of the $TiO_2$ powder exhibited powder form. For the HCl catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of thecatalysts.

Simultaneous Removal of Mercury and NO by Metal Chloride-loaded V2O5-WO3/TiO2-based SCR catalysts (금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.172-180
    • /
    • 2017
  • Thermodynamic evaluation indicates that nearly 100% conversion of elemental mercury to oxidized mercury can be attained by HCl of several tens of ppm level at the temperature window of SCR reaction. Cu-, Fe-, Mn-chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts revealed good NO removal activity at the operating temperature window of SCR process. The catalysts with high desorption temperature indicating adsorption strength of $NH_3$ revealed higher NO removal activity. The HCl fed to the reaction gases promoted the oxidation of mercury. However, the activity for the oxidation of elemental mercury to oxidized mercury by HCl was suppressed by $NH_3$ inhibiting the adsorption of HCl to catalyst surface under SCR reaction condition containing $NH_3$ for NO removal. Metal chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts showed much higher activity for mercury oxidation than $V_2O_5-WO_3/TiO_2$ catalyst without metal chloride under SCR reaction condition. This is primarily attributed to the participation of chloride in metal chloride on the catalyst surface promoting the oxidation of elemental mercury.

Optimization of Gold Leaching from the Refractory Sulfide Concentrate by HCl-NaClO-FeCl3 Solution (HCl-NaClO-FeCl3 용액을 이용한 저항성 황화광물 정광으로부터 금 용출 최적화)

  • Kim, Bong-Ju;Cho, Kang-Hee;Lee, Jong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • In order to optimize gold leaching from refractory sulfide concentrate, a HCl-NaClO-$FeCl_3$ solution with varying attributes was applied to the roasted concentrate from Uil mine. The gold from Uil mine occurs in the form of invisible gold that is difficult to leach. The results of the gold leaching experiments showed that the best gold leaching parameters were $550^{\circ}C$ of roasting temperature, 2.0 M of concentration, 1.0% of pulp density, and $70^{\circ}C$ of leaching temperature. It is confirmed that the HCl-NaClO-$FeCl_3$ solution was an environmentally friendly method to leach gold and silver from the refractory sulfide concentrate as an alternative lixiviant to cyanide.

Analysis of Chlorine Species in Chlorine Dioxide Bleaching Liquor and Generation Process by UV-VIS Spectroscopy

  • Wang, Li-Jun;Lee, Seon-Ho;Yoon, Byung-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.78-83
    • /
    • 1999
  • In this paper the extinction coefficients of molecule chlorine ($Cl_2$), chlorine dioxide (ClO$_2$), hypochlorous acid (HClO), chlorous acid ($HClO_2$$_2$) were determined using a PDA UV-VIS spectrophotometer. Based on these, the concentrations of $Cl_2$, $ClO_2$, and HClO in general chlorine dioxide bleaching liquor can be measured. The concentrations of $Cl_2$, $ClO_2$ and $HClO_2$ produced during the generation of methanol based chlorine dioxide generator can also be determined use the same method. The method was thought to be able to give more information in chlorine dioxide bleaching chemistry if combine its use with titration and ion chromatography.

  • PDF

Wet etching of α-Ga2O3 epitaxy film using a HCl-based solution (HCl 용액을 이용한 α-Ga2O3 epitaxy 박막의 습식 식각)

  • Choi, Byoung Su;Um, Ji Hun;Eom, Hae Ji;Jeon, Dae-Woo;Hwang, Sungu;Kim, Jin Kon;Yun, Young Hoon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.40-44
    • /
    • 2022
  • Wet etching of α-Ga2O3 epitaxy film was performed using a 35 % hydrochloric (HCl) acid solution. As the temperature of the 35 % HCl solution increased, the α-Ga2O3 etch rate increased, and the etch rate of 119.6 nm/min was obtained at 75℃, the highest temperature examined in this work. The activation energy for etch reaction was determined to be 0.776 eV, and this suggests that the wet etching of α-Ga2O3 in the 35 % HCl solution was dominated by the reaction-limited mechanism. AFM analysis showed that the surface roughness of the etched surface increased as the temperature of the etchant solution increased.

Role of HCl in Atomic Layer Deposition of TiO2 Thin Films from Titanium Tetrachloride and Water

  • Leem, Jina;Park, Inhye;Li, Yinshi;Zhou, Wenhao;Jin, Zhenyu;Shin, Seokhee;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1195-1201
    • /
    • 2014
  • Atomic layer deposition (ALD) of $TiO_2$ thin film from $TiCl_4$ and $H_2O$ has been intensively studied since the invention of ALD method to grow thin films via chemical adsorptions of two precursors. However the role of HCl which is a gaseous byproduct in ALD chemistry for $TiO_2$ growth is still intriguing in terms of the growth mechanism. In order to investigate the role of HCl in $TiO_2$ ALD, HCl pulse and its purging steps are inserted in a typical sequence of $TiCl_4$ pulse-purge-$H_2O$ pulse-purge. When they are inserted after the first-half reaction (chemisorption of $TiCl_4$), the grown thickness of $TiO_2$ becomes thinner or thicker at lower or higher growth temperatures than $300^{\circ}C$, respectively. However the insertion after the second-half reaction (chemisorption of $H_2O$) results in severely reduced thicknesses in all growth temperatures. By using the result, we explain the growth mechanism and the role of HCl in $TiO_2$ ALD.