DOI QR코드

DOI QR Code

Reaction morphology depending on the amounts of HCl and NH4OH and effect of pH on the preparation of TiO2 nanopowder

TiO2 나노분말 제조시 HCI과 NH4OH의 첨가량에 따른 반응양상과 pH의 영향

  • Lim, Chang Sung (Department of Advanced Materials Science and Engineering, Hanseo Univ.) ;
  • Oh, Won Chun (Department of Advanced Materials Science and Engineering, Hanseo Univ.)
  • Received : 2007.05.09
  • Accepted : 2007.06.29
  • Published : 2007.08.25

Abstract

The reaction morphology was investigated depending on the amounts of HCl and $NH_4OH$, and the effect of pH was studied on the preparation of $TiO_2$ nanopowders. $TiO_2$ nanopowder was prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCl and $NH_4OH$. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4OH$, the morphology of the $TiO_2$ powder exhibited powder form. For the HCl catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of thecatalysts.

$TiO_2$ 나노분말 제조시 HCl과$NH_4OH$의 첨가량에 따른 반응양상과 pH의 영향을 고찰하였다. Titanium tetra-isopropoxide의 가수분해 반응을 이용하여 nanosize의 $TiO_2$ 분말를 합성하였고, 촉매로 HCl과$NH_4OH$를 사용하였다. 촉매의 첨가량에 따른 반응양상과 생성된 $TiO_2$ 분말의 특성 변화를 조사하였다. 염기성 촉매인$NH_4OH$를 사용하였을 경우에 균질한 형상의 분말 형태의 $TiO_2$를 합성할 수 있었으며, 산성 촉매인 HCl을 사용하여 pH가 5.04 이하일 경우에는 괴상이나 과립의 형태로 생성되었다. 사용한 촉매의 종류와 양에 따라 저온의 결정상인 anatase의 생성속도와 보다 안정한 rutile 상으로의 상전이 속도가 영향을 받았다.

Keywords

References

  1. N. Serpone, D. Lawless and R. Khairutdinov, J. Phys. Chem., 99, 16655-16661 (1995) https://doi.org/10.1021/j100045a027
  2. H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M. A. Fox and M. Anpo, J. Catalysis, 158, 97-101 (1996) https://doi.org/10.1006/jcat.1996.0010
  3. K. Tanaka, K. Abe and T. Hisanaga, J. Photochem. Photobiol. A : Chem., 101, 85-87 (1996) https://doi.org/10.1016/S1010-6030(96)04393-6
  4. D. H. Kim and M. A. Anderson, Environ. Sci. Technol., 28(3), 479-483 (1994) https://doi.org/10.1021/es00052a021
  5. K. Kato, A. Tsuzuki, H. Taoda. Y. Torii, T. Kato and Y. Butsugan, J. Mat. Sci., 29, 5911-5915 (1994) https://doi.org/10.1007/BF00366875
  6. C. J. Brinker, G. W. Scherer, The Physics and Chemistry of Sol-Gel Processing : Academic : New York (1990)
  7. R. A. Spurr and H. Myers, Anal. Chem., 29, 760-762 (1957) https://doi.org/10.1021/ac60125a006
  8. K.-N. P. Kumar, K. Keizer and A. J. Burggraaf, J. Mater. Chem., 3, 1141-1149 (1993) https://doi.org/10.1039/jm9930301141
  9. X. Z. Ding, X. H. Liu and Y. Z. He, J. Mater. Sci. Lett., 15, 1789-1791 (1996) https://doi.org/10.1007/BF00275343
  10. Tai, K. Lee, D. H. Kim, Suh, H. Cho, P. C. Auh, J. W. Yang, Proceedings of ISES Solar World Congress Budapest (1993)