DOI QR코드

DOI QR Code

Simultaneous Removal of Mercury and NO by Metal Chloride-loaded V2O5-WO3/TiO2-based SCR catalysts

금속염화물이 담지된 V2O5-WO3/TiO2 계 SCR 촉매에 의한 수은 및 NO 동시 제거

  • Ham, Sung-Won (Department of Chemical Engineering, Kyungil University)
  • 함성원 (경일대학교 화학공학과)
  • Received : 2016.11.04
  • Accepted : 2016.11.15
  • Published : 2017.06.30

Abstract

Thermodynamic evaluation indicates that nearly 100% conversion of elemental mercury to oxidized mercury can be attained by HCl of several tens of ppm level at the temperature window of SCR reaction. Cu-, Fe-, Mn-chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts revealed good NO removal activity at the operating temperature window of SCR process. The catalysts with high desorption temperature indicating adsorption strength of $NH_3$ revealed higher NO removal activity. The HCl fed to the reaction gases promoted the oxidation of mercury. However, the activity for the oxidation of elemental mercury to oxidized mercury by HCl was suppressed by $NH_3$ inhibiting the adsorption of HCl to catalyst surface under SCR reaction condition containing $NH_3$ for NO removal. Metal chloride loaded $V_2O_5-WO_3/TiO_2$ catalysts showed much higher activity for mercury oxidation than $V_2O_5-WO_3/TiO_2$ catalyst without metal chloride under SCR reaction condition. This is primarily attributed to the participation of chloride in metal chloride on the catalyst surface promoting the oxidation of elemental mercury.

HCl에 의한 원소수은의 염화수은으로의 산화반응에 대한 열역학적 검토 결과 수십 ppm 수준의 HCl이 존재하는 경우에 SCR 반응 온도범위에서 원소수은의 염화수은으로의 전환은 100% 가능한 것으로 확인하였다. SCR공정 운전 온도범위에서 Cu, Fe, Mn의 염화물이 담지된 $V_2O_5-WO_3/TiO_2$ 촉매가 우수한 NO 제거 활성을 보였다. $NH_3-TPD$ 측정결과 $NH_3$의 흡착강도를 나타내는 탈착온도가 높은 촉매가 우수한 NO 제거활성을 나타내었다. 반응가스에 HCl을 공급할 경우 원소수은의 산화반응이 촉진되는 결과를 얻을 수 있었다. 그러나, NO와 함께 $NH_3$가 존재하는 SCR반응 조건에서는 촉매표면에 강하게 흡착되는 $NH_3$에 의해 촉매표면에 HCl의 흡착이 방해를 받기 때문에 HCl에 의한 원소수은의 염화수은으로의 산화반응 활성이 억제되는 것으로 나타났다. SCR반응 조건에서 금속염화물이 담지된 $V_2O_5-WO_3/TiO_2$ 촉매가 금속염화물이 담지되지 않은 $V_2O_5-WO_3/TiO_2$ 촉매에 비해 우수한 수은 산화활성을 보이는데 이는 촉매 표면에 존재하는 금속염화물의 염소기가 수은 산화반응에 참여하여 활성을 증가시키기 때문으로 판단된다.

Keywords

References

  1. National Research Council, "Toxicological Effects of Methylmercury," Committee on the Toxicological Effects of Methylmercury, Board on Environmental Studies and Toxicology, Commission on Life Sciences, National Academy Press, Washington, DC (2000).
  2. Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal. D. L., and Benson, S. A., "Status Review of Mercury Control Options for Coal-Fired Power Plants," Fuel Process Technol., 82, 89-165 (2003). https://doi.org/10.1016/S0378-3820(03)00059-6
  3. Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., and Nater, E. A., "The Case for Atmospheric Mercury Contamination in Remote Areas," Environ. Sci. Technol., 32, 1-7 (1998). https://doi.org/10.1021/es970284w
  4. Ji, L., Sreekanth, P. M., Smirniotis, P. G., Thiel, S. W., and Pinto, N. G., "Manganese Oxide/Titania Materials for Removal of NOx and Elemental Mercury from Flue Gas," Energy Fuels, 22(4), 2299-2306 (2008). https://doi.org/10.1021/ef700533q
  5. Ham, S. W., and Nam, I. S., "Selective Catalytic Reduction of Nitrogen Oxide by Ammonia," Catal., The Royal Soc. Chem., Cambridge, 16, 236-271 (2002).
  6. Ham, S. W., Soh, B. W., and Nam, I. S., "Sulfur Poisoning and Tolerance of SCR Catalyst to Remove NO by $NH_3$," J. Korean Ind. Eng. Chem., 15(4), 373-385 (2004).
  7. Vidic, R. D., and Siler, D. P., "Vapor-phase Elemental Mercury Adsorption by Activated Carbon Impregnated with Chloride and Chelating Agents," Carbon, 39(1), 3-14 (2001). https://doi.org/10.1016/S0008-6223(00)00081-6
  8. Krishnan, S. V., Gullett, B. K., and Jorewlczt, W., "Sorption of Elemental Mercury by Activated Carbons," Environ. Sci. Technol., 28(8), 1506-1512 (1994). https://doi.org/10.1021/es00057a020
  9. Lee, C., Srivastava, R. K., Ghorishi, S., Hastings, T., and Stevens, F., J., "Investigation of Selective Catalytic Reduction Impact on Mercury Speciation Under Simulated NOx Emission Control Conditions," J. Air Waste & Manage. Assoc., 54, 1560-1566 (2004). https://doi.org/10.1080/10473289.2004.10471009
  10. Niksa, S., and Fujiwara, N., J., "A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts Under Coal-Derived Flue Gas," J. Air & Waste Manage. Assoc., 55, 1866-1875 (2005). https://doi.org/10.1080/10473289.2005.10464779
  11. Straube, S., Hahn, T., and Koeser, H., "Adsorption and Oxidation of Mercury in Tail-End SCR-DeNOx Plants-Bench Scale Investigations and Speciation Experiments," Appl. Catal. B: Environ., 79, 286-295 (2008). https://doi.org/10.1016/j.apcatb.2007.10.031
  12. Hocquel, M., "The Behaviour and Fate of Mercury in Coal-Fired Power Plants with Downstream Air Pollution Control Devices," VDI Verlag: Dusseldorf, Germany (2004).
  13. Eswaran, S., and Stenger, H., "Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts," Energy Fuels., 19, 2328-2334 (2005). https://doi.org/10.1021/ef050087f
  14. Hong, H. J., Ham, S. W., Kim, M. H., Lee, S. M., and Lee, J. B., "Characteristics of Commercial SCR Catalyst for the Oxidation of Gaseous Elemental Mercury with Respect to Reaction Conditions," Korean J. Chem. Eng., 27(4), 1117-1122 (2010). https://doi.org/10.1007/s11814-010-0175-x
  15. Kim, M. H., Ham, S. W., and Lee, J. B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over $CuCl_2/TiO_2$-based catalysts in SCR process," Appl. Catal. B: Environ., 99, 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032
  16. Srivastava, R. K., Hutson, K., Martin, B., Princiotta, F., and Staudt, J., "Control of Mercury Emissions from Coal-Fired Electric Utility Boilers," Environ. Sci. Technol., March 1, 1385-1393 (2006).
  17. Sliger, R. N., Kramlich, J. C., and Marinov, N. M., "Towards the Development of a Chemical Kinetic Model for the Homogeneous Oxidation of Mercury by Chlorine Species," Fuel Process. Technol., 65-66, 423-438 (2000). https://doi.org/10.1016/S0378-3820(99)00108-3
  18. Hong, H. J., and Ham, S. W., "Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-Phase Elemental Mercury," Clean Technol., 17(4), 370-378 (2011). https://doi.org/10.7464/KSCT.2011.17.4.370
  19. Galbreath, K., and Zygarlicke, C., "Mercury Transformations in Coal Combustion Flue Gas," Fuel Process. Technol., 65-66, 289-310 (2000). https://doi.org/10.1016/S0378-3820(99)00102-2
  20. Senior, C., Sarofim, A., Zeng, T., Helble, J., and Mamani-Paco, R., "Gas-phase Transformations of Mercury in Coal-Fired Power Plants," Fuel Process Technol., 63, 197-213 (2000). https://doi.org/10.1016/S0378-3820(99)00097-1
  21. Hranisavljevic, J., and Fontijn, A., "Kinetics of Ground-State Cd Reactions with $Cl_2$, $O_2$ and HCl over Wide Temperature Ranges," J. Phys. Chem., 101, 2323-2326 (1997). https://doi.org/10.1021/jp963074z
  22. Lietti, L., Forzatti, P., and Berti, F., "Role of the Redox Properties in the SCR of NO by $NH_3$ over $V_2O_5-WO_3/TiO_2$ Catalysts," Catal. Lett., 41, 35-39 (1996). https://doi.org/10.1007/BF00811709
  23. Dunn, J. P., Koppula, P. R., Stenger, H. G., and Wachs, I., "Oxidation of Sulfur Dioxide to Sulfur Trioxide Over Supported Vanadia Catalysts," Appl. Catal. B: Environ., 19, 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
  24. Choi, E. Y., Nam, I. S., and Kim, Y. G., "TPD Study of Mordenite-Type Zeolites for Selective Catalytic Reduction of NO by $NH_3$," J. Catal., 161, 597-604 (1996). https://doi.org/10.1006/jcat.1996.0222
  25. Chen, J. P., Buzanowski, M. A., Yang, R. T., and Cichanowicz, J. E., "Deactivation of the Vanadia Catalyst in the Selective Catalytic Reduction Process," J. Air & Waste Manage. Assoc., 40, 1403-1049 (1990). https://doi.org/10.1080/10473289.1990.10466793