DOI QR코드

DOI QR Code

A Study on the Reduction of COD, Total Phosphorus and Nitrogen in Wastewater by Electrolysis and HClO Treatment

전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구

  • Kim, Tae Kyeong (Division of Civil, Environmental and Chemical Engineering, Changwon National Univ.) ;
  • Song, Ju Yeong (Division of Civil, Environmental and Chemical Engineering, Changwon National Univ.)
  • 김태경 (창원대학교 토목환경화공융합공학부) ;
  • 송주영 (창원대학교 토목환경화공융합공학부)
  • Received : 2017.07.15
  • Accepted : 2017.08.28
  • Published : 2017.09.30

Abstract

This study was conducted to develop a wastewater treatment system to remove organic matter, nitrate nitrogen, and phosphate ion in synthetic wastewater. COD was removed almost 100% by the oxidation reaction of HClO and nitrate nitrogen was reduced to ammonia by electrolysis treatment, but ammonia was reoxidized into nitrate nitrogen by HClO treatment. Ammonia was removed almost 100% by heating evaporation and no ammonia was reoxidized into nitrate by HClO treatment. Phosphate ion could be removed by precipitation treatment by forming metal complex according to pH. Through electrolysis treatment and HClO treatment, removal efficiencies of COD 99.5%, nitrogen 97.3% and phosphorus 91.5% were obtained.

합성폐수 내의 유기물(COD), 질산성 질소, 인산이온을 제거하기 위한 폐수처리 시스템 개발을 위한 연구를 수행하였다. 먼저 COD는 HClO의 산화 반응에 의해 거의 100 % 제거되었으며 전기화학적 처리에 의해 질산성 질소가 암모니아성 질소로 환원되지만, 암모니아성 질소는 HClO 처리에 의해 질산성 질소로 재 산화 되었다. 암모니아성 질소는 가열 증발 처리에 의하여 거의 100% 제거 되었으며 HClO 처리를 하여도 재 산화되는 암모니아성 질소는 나타나지 않았다. 인산 이온은 pH에 따라 금속 착염을 형성함으로써 침전 처리에 의해 제거할 수 있었으며 전기화학적 처리와 HClO 처리를 통하여 COD 99.5 % 이상, 질소 97.3 %, 인 91.5 %의 제거 효율을 얻을 수 있었다.

Keywords

References

  1. S. Hamoudi, R. Saad, and K. Belkacemi, Adsorptive Removal of Phosphate and Nitrate Anions from Aqueous Solutions Using Ammonium-Functionalized Mesoporous Silica, Ind. Eng. Chem. Res., 46, 8806-8812, (2007). https://doi.org/10.1021/ie070195k
  2. K. C. Cho, M. H. Lee, J. H. Park, and J. T. Jung, A Study on Removal of Dissolved Organic Matter and Phosphorus in Eutrophic Lake by Coagulation Process Using Powdered Activated Carbon, Korean Wetlands Society, 14(4), 629-635, (2012).
  3. G. T. Jeong, S. H. Park, J. H. Park, S. H. Bhang, E. T. Lim, and D. H. Park, Study of Factors Influenced on denitrification in wastewater treatment, Korean J. Biotechnol. Bioeng., 23(6), 535-540, (2008).
  4. J. K. Cho, Characteristics of Nitrogen and Phosphorus Removal by Olivine, Journal of Korean Society of Urban Environment, 10(3), 247-252, (2010).
  5. S. S. Choi, J. H. Choi, M. J. Kim, Y. S. Lee, J. H. Ha, and H. J. Cha, Enhancement of Nitrate Removal Ability in Aqueous Phase Using Ulmus davidiana Bark for Preventing Eutrophication, Journal of Industrial and Engineering Chemistry, 26(5), 604-608, (2015).
  6. J. S. Lee and D. S. Kim, Synthesis of Hydroxyapatite as the Artificial Bone Materials from Phosphate Wastewater Simulating Human Body Fluid, J. of Koreans Inst. of Resources Recycling, 13(3), 3-11, (2004).
  7. M. K. Kang, G. W. Shin, H. S. Park, T. S. Kim ,and S. I. Lee, The Performance of the Lanthanum-Zeolite Composite for the Eutrophication Prevent, J. Kor. Soc. Environ. Eng., 36(3), 206-213, (2014). https://doi.org/10.4491/KSEE.2014.36.3.206
  8. M. Mohsenipour, S. Shahid, and K. Ebrahimi, Removal Techniques of Nitrate from Water, Asian Journal of Chemistry, 26(23), 7881-7886, (2014). https://doi.org/10.14233/ajchem.2014.17136
  9. S. M. Lee and W. H. Yoon, Characteristics of Nitrate Nitrogen and Phosphate Removals by Alumina Cement, Journal of Korean Society of Urban Environment, 12(1), 35-42, (2012).
  10. G. T. Jeong, S. H. Park, J. H. Park, E. T. Lim, S. H. Bang, and D. H. Park, Effect of Factors of Nitrification Process in Wastewater Treatment, Korean J. Biotechnol. Bioeng., 24, 296-302, (2009).
  11. T. K. Kim, J. H. Kim, and J. Y. Song, A Study on the Nitrate Removal in Water by Chelating bond of Sodium Alginate, Journal of Korean Oil Chemists' Society, 33(4), 795-801, (2016). https://doi.org/10.12925/jkocs.2016.33.4.795
  12. J. H. Lee, H. K. Choi, I. S. Han, Removal of Phsphorus in Lake Water by Using EC in Hybrid System, Journal of Keorean Society of Urban Environment, 9(2), 107-114, (2009).
  13. B. S. Nam, Y. H. Lee, and M. H. Cho, Simultaneous Removal of Nitrogen and Phosphorus by Rotating Biological Activated Carbon Process, Korean J. Biotechnol. Bioeng., 14(5), 606-610, (1999).
  14. E. Y. Jo, S. M. Park, I. S. Yeo, J. S. Moon, J. Y. Park, J. C. Kim, Y. S. Kim, and C. G. Park, Study on the Removal Efficiency of Nitrogen and Phosphorus in Wastewater Treatment System using Magnetite Powder, The KSFM Journal of Fluid Machinery, 18(2), 43-47, (2015). https://doi.org/10.5293/kfma.2015.18.2.043
  15. S J. Lee, J. H. Kim, and J. Y. Song, A Study on the Removal of Nitrate Nitrogen by Redox Reaction of Zinc in Acidic Atmosphere. Journal of Korean Oil Chemists' Society, 33(3), 441-448, (2016). https://doi.org/10.12925/jkocs.2016.33.3.441
  16. J. K. Lee, D. Y. Kim and Y. S. Tak, Transformation of Nitrogen in the Form of Nitrate into Ammonia by Electrochemical Reaction. Korean Chem. Eng. Res., 46(5), 1013-1016, (2008).