• Title/Summary/Keyword: HA-coated implant

Search Result 63, Processing Time 0.032 seconds

The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant

  • Kim, Seong-Won;Kwon, Young-Hyuk;Chung, Jong-Hyuk;Shin, Seung-Il;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.6
    • /
    • pp.276-282
    • /
    • 2010
  • Purpose: The present study was performed to evaluate the effect of erbium:yttrium-aluminium-garnet (Er:YAG) laser irradiation on the change of hydroxyapatite (HA)-coated implant surface microstructure according to the laser energy and the application time. Methods: The implant surface was irradiated by Er:YAG laser under combination condition using the laser energy of 100 mJ/pulse, 140 mJ/pulse and 180 mJ/pulse and application time of 1 minute, 1.5 minutes and 2 minutes. The specimens were examined by surface roughness evaluation and scanning electron microscopic observation. Results: In scanning electron microscope, HA-coated implant surface was not altered by Er:YAG laser irradiation under experimental condition on 100 mJ/pulse, 1 minute. Local areas with surface melting and cracks were founded on 100 mJ/pulse, 1.5 minutes and 2 minutes. One hundred forty mJ/pulse and 180 mJ/pulse group had surface melting and peeling area of HA particles, which condition was more severe depending on the increase of application time. Under all experimental condition, the difference of surface roughness value on implant surface was not statistically significant. Conclusions: Er:YAG laser on HA-coated implant surface is recommended to be irradiated below 100 mJ/pulse, 1 minute for detoxification of implant surface without surface alteration.

Healing of the Bone around Hydroxyapatite-Coated Implants without Primary Bone Contact (초기 골 접촉이 없는 수산화 인회석 피복 임프란트 주위 골의 치유)

  • Cho, Hyung-Soo;Shin, Kwang-Yong;Kim, Heung-Joong;Park, Joo-Cheol;Han, Kyung-Yoon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.415-433
    • /
    • 1999
  • Implant stability is the key to long-term successful outcome for osseointegrated implants. To evaluate the initial healing response of bone around HA-coated implants without primary bone contact. 21 HA-coated thread type implants(STERI-OSS?) were placed in the femurs of 5 mongrel dogs, about 1-year old. Implants, 8 mm in length and 3.8mm(experimental 1group), 5.0mm(experimental 2group) and 6.0mm(control group) in diameter, were inserted after 3 holes of 6.0mm in diameter and 10mm in depth were prepared in the surgical sites each dog. Implants were supported by only nonresorbable membrane($Teflon^{(R)}$), in order to prevent the ingrowth of upper soft tissue into the gap between bone and implant, and to maintain each implant to be positioned in the center of the drilled hole. 9 implants with different diameters were inserted in 3 dogs for histologic observation, and 12 implants were inserted in 2 dogs for mobility test and removal torque test. Fluorescent dyes were injected for the observation of new bone formation in order of $Terramycin^{(R)}$, Arizarin $Red^{(R)}$, and $Calcein^{(R)}$ at an interval of 2 weeks. 3 dogs were sacrificed for histologic observation at 4, 8, and 12-week after placement. Light microscopy and confocal laser scanning microscopy were used to qualitatively characterize the bone around HA-coated implant. 2 dogs were sacrificed for mobility test($Periotest^{(R)}$, Simens AG, Bensheim, Germany) and removal torque test($Autograph^{(R)}$ AGS-1000D series, Japan) at 8 and 12-week after placement The results were as follows: 1. Histologic observation showed that osseointegration occurred to both control and experimental groups as time lapse, but delayed bone healing was revealed in 3.8mm group (experimental 1group), compared to contrtol group and 5.0mm group (experimental 2group). 2. The mobility test showed that the experimental groups had no distinguishable movement during experimental periods of 8 and 12-week, and there was no difference in mobility depending on the gap between bone and implant, and time lapse. 3. The removal torque forces were increased depended on the gaps decreasing between bone and implant, and time lapse. The results suggest that HA-coated implant without primary bone contact, based on guided bone regeneration could obtain its stability in all experimental groups as time lapse, but bone healing was delayed in experimental group of 3.8mm. And the results suggested that studies on correlationship between mobility test and removal torque test for implant stability would be necessary.

  • PDF

HISTOLOGICAL COMPARISONS OF TITANIUM PLASMA SPRAYED IMPLANT AND HYDROXYAPATITE COATED IMPLANT TO BONE INTERFACE IN PERIODONTALLY INVOLVED EXTRACTION SOCKETS IN DOGS (성견 치주질환 이환 발치와에 즉시 임플란트 매식술시 Titanium plasma sprayed 임프란트와 Hydroxyapatite coated 임프란트의 계면조직에 관한 연구)

  • Kim, Jin-Sook;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.400-410
    • /
    • 1993
  • Dental implants have been widely used in the treatment of esthetic and functional problems of the mouth due to alveolar bone loss, after tooth extraction. The success of implantation strongly depends on osseointegration. For osseointegration, implant material, methodology, and design have been investigated. For materials, two popular materials at present are titanium and hydroxyapatite. For methods, immediate implantation is being used recently. The purpose of this study is to evaluate osseointegration between the unthreaded cylindrical TPS implant and the HA-coated implant by a histomorphometric analysis. For this analysis, experimental periodontits was induced on the 3, 4 premolars of adult dogs by the ligation of orthodontic threads. Thereafter, each tooth was extracted. TPS. Implants and HA-coated implants were immediately inserted in the extraction socket. In control group, TPS implants were immediately inserted, and In experimental group, HA implants were immediately inserted. The dogs were sacrificed after 12 weeks, then the specimens were prepared for LM and histomorphometric analysis. The conclusion of this study is as follows l. In both control and experimental group, no inflammatory cells were observed. 2. The results of the histomorphometric analysis showed that the total osseointegration was 48.5% in control group, and 68.8% in expermental group. The experimental group was higher than the control group, and the difference was not statistically significant (p<0.05). 3. The results of the histomorphometric analysis showed that the osseointegration in the hole was 40.6% in control group, and 70.2% in experimental group. The experimental group was higher than the control group, and the difference was statistically significant (p<0.05). In both control and experinental group, no inflammatory cells were observed. 4. The results of the histomorphometric analysis showed that the osseointegration in the lower part was 52.1% in control group, and 73.3% in experimental group. The experimental group was higher than the control group, and the difference was statistically significant (p<0.05). 5. In experimental group, the bone to HA interface seemed to be mixed of bone and HA. We could not distinguish HA from the bone. The HA coating was detached from the titanium surface.

  • PDF

STUDY ON THE ENHANCING MICRO-ROUGHNESS OF POROUS SURFACED DENIAL IMPLANT THROUGH ANODIZATION (양극산화처리를 통한 다공성 임플랜트 표면의 표면거칠기 증대에 대한 연구)

  • Yoon, Tae-Ho;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.617-627
    • /
    • 2006
  • Statement of problem: HA has been used as a coating material on Ti implants to improve osteoconductivity. However. it is difficult to form uniform HA coatings on implants with complex surface geometries using a plasma spraying technique. Purpose : To determine if Ti6Al4V sintered porous-surfaced implants coated with HA sol-gel coated and hydrothermal treated would accelerate osseointegration. Materials and Methods : Porous implants which were made by electric discharge were used in this study. Implants were anodized and hydrothermal treatment or HA sol-gel coating was performed. Hydrothermal treatment was conducted by high pressure steam at $300^{\circ}C$ for 2 hours using a autoclave. To make a HA sol, triethyl phosphite and calcium nitrate were diluted and dissolved in anhydrous ethanol and mixed. Then anodized implant were spin-coated with the prepared HA sols and heat treated. Samples were soaked in the Hanks solution with pH 7.4 at $37^{\circ}C$ for 6 weeks. The microstructure of the specimens was observed with a scanning electron microscope (SEM), and the composition of the surface layer was analyzed with an energy dispersive spectroscope (EDS). Results : The scanning electron micrographs of HA sol-gel coated and hydrothermal treated surface did not show any significant change in the size or shape of the pores. After immersion in Hanks' solution the precipitated HA crystals covered macro- and micro-pores The precipitated Ca and P increased in Hanks' solution that surface treatment caused increased activity. Conclusion : This study shows that sol-gel coated HA and hydrothermal treatment significantly enhance the rate of HA formation due to the altered surface chemistry.

HISTOMORPHOMETRIC STUDY ON THE INFLUENCE OF STEROID TOPICAL IRRIGATION AND IMPLANT SURFACE ON BONE HEALING IN THE IRRADIATED RABBIT TIBIA (방사선 조사 후 매식한 임프란트의 표면 종류와 스테로이드 관주에 따른 골 치유 효과에 대한 조직 형태학적 연구)

  • Shin, Sung-Soo;Park, Yang-Ho;Park, Jun-Woo;Rhee, Gun-Joo;Kim, Hyun-Man;Ko, Jae-Seung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.455-464
    • /
    • 2004
  • The purpose of this study was to evaluate and compare the influence of Steroid topical irrigation and implant surface on bone healing in the irradiated rabbit tibia. Implant to bone contact surface ratio and the pattern of bone healing around hydroxyapatite(HA) coated implant and pure titanium (Ti) implant which were inserted into the irradiated rabbit tibia were compared. 16 Korean house mature male rabbits were used as experimental animal. Each rabbit received 15 Gy of irradiation. 4 weeks after the irradiation, two holes were prepared in the irradiated tibia of each rabbits, where two surface type of implants were inserted :1) HA coated type and 2) pure Ti type. Right before placing implants, one group of rabbit received steroid irrigation and the other group did saline. After the irrigation, two implants of HA coated type and pure Ti type were inserted into the tibia of each rabbits. Each rabbit were sacrificed at 2nd, 4th, and 8th week after the implantation and the specimens were observed by the light microscope. The pattern of bone healing and histomorphometric analysis of the implant-bone interface were done. The results were as follows. 1. All implants inserted into the irradiated tibia of rabbit did not show any sign of clinical mobility and the bone around implants inserted into the irradiated tibia of rabbit did not show any resorption. 2. The bone to implant contact surface ratio around HA coated implants that received steroid irrigation got more bone to implant contact surface ratio than that of the saline irrigation. This result showed statistically significant(p<0.05). There was no statistically significant difference in 8th week group. 3. Though there was no statistically significant difference HA coated implants had more bone to implant contact surface ratio than pure Ti implant in 2nd and 4th groups, and there was no difference in 8th week group. 4. All implants inserted into the irradiated tibia of rabbit had exhibited successful osseointegraion.

A HISTOLOGICAL STUDY OF SURROUNDING BONE TISSUE REACTION TO HYDROXY APATITE COATED DENTAL IMPLANT (Hydroxy Apatite가 피복된 치과매식체의 주위골조직 반응에 관한 조직학적 연구)

  • Song, Joon-Ki;Hur, Sung-Joo;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.23-34
    • /
    • 1991
  • Even if we can recover the function of mastication, pronunciation and esthetic using the fixed or removable prosthesis in the loss of teeth or hard tissue in the oral cavity, we use several kinds of implants in order to solve the problem which can be occured when we can't install the denture because of excessive bone resolution or psychlogical affairs. At present Titanium implant plays a major role in this field and has osseointegrated. And the study on the modern material is going on, that result in developing and using the implant which is coated with HA, bone induced material. In this, I studied histologically the change of the bone tissue which is occured when three kinds of HA coated implants. Such as Integral, Sustain, Biovent implanted into mandible of dog and got a 8-weeks healing period. I got the conclusion as follows: 1. Most of the implant which is covered with serveral kinds of HA coating implant in bone after 8 weeks being implanted and has osseointegrated, partially converted into the connective tissue. 2. Biovent formed the connective tissue in the perforated area of inferior alveolar canal and has osseointegrated.

  • PDF

Surface characteristics of a novel hydroxyapatite-coated dental implant

  • Jung, Ui-Won;Hwang, Ji-Wan;Choi, Da-Yae;Hu, Kyung-Seok;Kwon, Mi-Kyung;Choi, Seong-Ho;Kim, Hee-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.2
    • /
    • pp.59-63
    • /
    • 2012
  • Purpose: This study evaluated the surface characteristics and bond strength produced using a novel technique for coating hydroxyapatite (HA) onto titanium implants. Methods: HA was coated on the titanium implant surface using a super-high-speed (SHS) blasting method with highly purified HA. The coating was performed at a low temperature, unlike conventional HA coating methods. Coating thickness was measured. The novel HA-coated disc was fabricated. X-ray diffraction analysis was performed directly on the disc to evaluate crystallinity. Four novel HA-coated discs and four resorbable blast medium (RBM) discs were prepared. Their surface roughnesses and areas were measured. Five puretitanium, RBM-treated, and novel HA-coated discs were prepared. Contact angle was measured. Two-way analysis of variance and the post-hoc Scheffe's test were used to analyze differences between the groups, with those with a probability of P<0.05 considered to be statistically significant. To evaluate exfoliation of the coating layer, 7 sites on the mandibles from 7 mongrel dogs were used. Other sites were used for another research project. In total, seven novel HA-coated implants were placed 2 months after extraction of premolars according to the manufacturer's instructions. The dogs were sacrificed 8 weeks after implant surgery. Implants were removed using a ratchet driver. The surface of the retrieved implants was evaluated microscopically. Results: A uniform HA coating layer was formed on the titanium implants with no deformation of the RBM titanium surface microtexture when an SHS blasting method was used. Conclusions: These HA-coated implants exhibited increased roughness, crystallinity, and wettability when compared with RBM implants.

INFLUENCE OF TOPICAL IRRIGATION USING THE HA & PURE Ti IMPLANTS ON BONE FORMATION;A STUDY ON THE IRRADIATED RABBIT TIBIA (방사선 조사후 매식한 임프란트와 관주에 따른 골치유에 대한 비교연구)

  • Hong, Sung-Pal;Rhee, Gun-Joo;Cha, Yong-Doo;Oh, Se-Jong;Hyun, Jung-Min;Choi, Dong-Joo;Park, Young-Joo;Park, Jon-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.1
    • /
    • pp.59-72
    • /
    • 2000
  • In this study, the rate of bone formation and the pattern of bone to implant contact surface around HA coated implant and pure Ti implant inserted into the irradiated tibia of rabbit were compared. Sixteen mongrel mature male rabbits were used as experimental animal. Each rabbit received 15 Gy of irradiation. Four weeks after irradiation, two holes were prepared on the tibia of each rabbit for placement of HA coated type and pure Ti type implants. Prior to implant placement, one group received steroid irrigation and the control group was similarly irrigated with normal saline. This was immediately followed by placement of the two different types of implants. Postoperatively, tetracycline was injected intramuscularly for 3 days. For fluorescent labelling, 3 days of intramuscular alizarine red injection was given. 2 weeks before sacrifice, followed by intramuscular calcein green on the last 3 days before specimen collection. Each rabbit was sacrificed on the second, fourth, sixth and eighth week after the implantation. The specimens were observed by the light microscope and the fluorescent microscope. The results were as follows; 1. All implants inserted into the irradiated tibia of rabbit were free from clinical mobility and no signs of bony resorption were noted around the site of implant placement. 2. Under the light microscope, new bone formation proceeded faster around implants that received steroid irrigation compared to the control group irrigated with saline. Bone to implant contact surface was greater in the steroid irrigated group than the saline irrigated group. Therefore, better initial stabilization was observed in the group pretreated with steroid irrigation. 3. Under the light microscope. HA coated implants showed broader bone to implant contact surface than pure Ti implants, and HA coated implants had better bone healing pattern than pure Ti implants. 4. In the steroid pretreated group, acceleration of bone formation was demonstrated by fluorescent microscopy around the 2, 4 weeks group and the 6 weeks HA coated implant group. The difference in the rate of bone formation proved to be statistically significant(P<0.05). Faster bone formation was noted in the saline irrigated group in the 6 weeks pure Ti implants and 8 weeks group. The difference was not statistically significant(P<0.05). 5. For the rabbits that were sacrificed on the second and fourth week after the implant placements, the rates of bone formation around HA coated implants proceeded faster than those around pure Ti implants under the fluorescent microscopy. For the rabbits that were sacrificed on the sixth week after the implant placements, the rates of bone formation around pure Ti implants proceeded faster than those around HA coated implants under the fluorescent microscopy. But this result did not show statistical significance (P<0.05) For the rabbits that were sacrificed on the eighth week after the implant placements, the rates of bone formation around HA coated implants proceeded faster than those around pure Ti implants under the fluorescent microscopy. This result was statistically significant (P<0.05).

  • PDF

A review of biocompatibility of zirconia and bioactivity as a zirconia implant: In vivo experiment (지르코니아의 생체적합성과 임플란트로서의 생체활성에 대한 연구: In vivo 실험 문헌 고찰)

  • Suh, Da-Won;Kim, Young-Kyun;Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.1
    • /
    • pp.88-94
    • /
    • 2019
  • Increasing demands for esthetic dental treatment, zirconia, which has high mechanical and esthetic properties, had been applied more and more in clinics. Therefore, assessment of biocompatibility of zirconia is necessary. In this article, a review of in vivo studies of zirconia compatibility was performed. In vivo studies showed zirconia had great biocompatibility both on soft and hard tissue. Studies with various animals and patients reported high biocompatibility of zirconia. In terms of bone synthesis and bone adhesion, zirconia showed similar biocompatible properties to titanium. On the other hand, zirconia could be used as implant. For using as an implant, various methods of Hydroxyapatite (HA) coating had been suggested. Since HA coating on titanium implant showed some problems such as low bonding strength and degeneration of HA, HA-zirconia composite, HA-coated zirconia, and HA-zirconia functionally graded material (FGM) or intermediate layer of alumina had been proposed. These methods showed higher bonding strength and biocompatibility.

Micromorphometric change of implant surface conditioned with Tetracycline-HCl : HA and Etched surface (염산테트라싸이클린의 적용시간에 따른 특수 가공된 임프란트 표면 변화)

  • Han, Ju-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.731-744
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, HA-coated surface and dual acid etched surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-HCL solution for ${\frac{1}{2}}$min., 1min., $1{\frac{1}{2}}$min., 2min., and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The etched surfaces showed the honey comb structures. The surface conditioning with tetracycline-HCI didn't influence on its micro-morphology. In conclusion, the detoxification with $50mg/m{\ell}$ tetracycline-HCI must be applied respectively with different time according to various implant surfaces.