• Title/Summary/Keyword: H.264/AVC Video Coding

Search Result 326, Processing Time 0.026 seconds

Joint Source/Channel Coding Based on Two-Dimensional Optimization for Scalable H.264/AVC Video

  • Li, Xiao-Feng;Zhou, Ning;Liu, Hong-Sheng
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • The scalable extension of the H.264/AVC video coding standard (SVC) demonstrates superb adaptability in video communications. Joint source and channel coding (JSCC) has been shown to be very effective for such scalable video consisting of parts of different significance. In this paper, a new JSCC scheme for SVC transmission over packet loss channels is proposed which performs two-dimensional optimization on the quality layers of each frame in a rate-distortion (R-D) sense as well as on the temporal hierarchical structure of frames under dependency constraints. To compute the end-to-end R-D points of a frame, a novel reduced trellis algorithm is developed with a significant reduction of complexity from the existing Viterbi-based algorithm. The R-D points of frames are sorted under the hierarchical dependency constraints and optimal JSCC solution is obtained in terms of the best R-D performance. Experimental results show that our scheme outperforms the existing scheme of [13] with average quality gains of 0.26 dB and 0.22 dB for progressive and non-progressive modes respectively.

A Fast Macroblock Mode Decision Method using PSNR Prediction for H.264/AVC (H.264/AVC에서 PSNR 예측을 이용한 고속 매크로블록 모드 결정 방법)

  • Park, Sung-Jae;Myung, Jin-Su;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-151
    • /
    • 2008
  • H.264/AVC is showed high coding efficiency more than previous video coding standard by using new coding tools. Specially, Variable block-based motion estimation and Rate-Distortion Optimization are very important coding tools in H.264/AVC. These coding tools have high coding efficiency, however the encoder complexity greatly increase due to these coding tools. In this paper, we propose early SKIP mode decision and selective inter/intra mode decision to reduce the computational complexity. Simulation results show that the proposed method could reduce encoding time of the overall sequences by 30% on average than JM 10.2 without noticeable degradation of coding efficiency. Besides, the proposed method runs over twice as fast as the previous proposed Fast Coding Mode Selection method (FCMS)[5].

An Efficient Coding Method for Stereoscopic Videos using HEVC (HEVC를 이용한 양안식 영상의 효율적인 부호화 방법)

  • Hwang, Soo-Jin;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.721-726
    • /
    • 2011
  • The compression performance of HEVC (high efficiency video coding) is improved 40%, compared to H.264/AVC. Since the existing 3D video CODEC is based on H.264/AVC or MPEG-2, we can improve the compression performance when we use the proposed stereoscopic video coding method based on HEVC. Since the stereoscopic video has the temporal and inter-view correlations, the videos of the left and right cameras encode together to improve the performance. Especially, we implemented the proposed technique using HM(HEVC test model) 3.4. To compare the performance of the proposed method, we only compare the right view video which is coded using the inter-view prediction. The proposed method which is considered inter-view correlation is improved the performance which BDBR reduce about 36.24% and BDPSNR increase approximately 1.19 dB compared to the separated-coding method.

Selective temporal error concealment method for H.264/AVC (H.264/AVC를 위한 선택적 시간축 에러 은닉 방법)

  • Jung Bongsoo;Choi Woongil;Jeon Byeungwoo;Kim Myung-Don;Choi Song-In
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.87-100
    • /
    • 2005
  • In this paper, we propose a new selective temporal error concealment algerian best suited for H.264/AVC. The proposed algorithm performs selective temporal error concealment depending on whether the lost block is at background or foreground. It the corrupted macroblock is decided as at background, then the simple temporal replacement is performed. Also we propose replacing a lost block at foreground with the selective average of respectively estimated blocks from the multiple reference frames. This paper supposes error-corrupted H.264/AVC video bitstreams over CDMA2000 (or UMTS) air interface. It is shown that under Flexible Macroblock Ordering (FMO) coding of H.264/AVC, the proposed algorithm provides PSNR gain up to 1.18dB compared to built-in algorithm in the K264/AVC test model. In addition, the proposed error concealment method has average PSNR improvement of 0.33dB compared with that under N-slice coding mode. The proposed algorithm also provides better subjective video quality than other conventional error concealment algorithms.

Fast Intra Mode Selection Algorithm for H.264/AVC Using Constraints of Frequency Characteristics (주파수 특성의 제약 조건들을 이용한 H.264/AVC를 위한 고속 화면 내 모드 선택 방법)

  • Jin, Soon-Jong;Park, Sang-Jun;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.321-329
    • /
    • 2008
  • H.264/AVC video coding standard enables a considerably higher improvement in coding efficiency compared with previous standards such as MPEG-2, H.263 and MPEG-4. To achieve this, for each macro-block in H.264/AVC, Rate-Distortion Optimization (RDO) technique is employed to select the best motion vector, reference frame, and macro-block mode. As a result, computational complexity is increased significantly whereas RDO achieve higher improvement. This paper presents fast intra mode selection algorithm based on constraints of frequency characteristics which are derived from intra coding modes of H.264/AVC. First of all, we observe the features of each intra mode through the frequency analysis of image. And then proposed Frequency Error Costs (FECs) are calculated to select the best mode which has minimum cost. Computational complexity is considerably reduced because rate-distortion costs only calculate the candidate modes which are set of best mode and its neighbouring two modes. Experimental results show that proposed algorithm reduces the complexity dramatically maintaining the rate-distortion performance compared with H.264/AVC reference software.

Error Concealment Algorithm Using Lagrange Interpolation For H.264/AVC (RTP/IP 기반의 네트워크 전송 환경에서 라그랑제 보간법을 이용한 에러 은닉 기법)

  • Jung, Hak-Jae;Ahn, Do-Rang;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.161-163
    • /
    • 2005
  • In this paper, we propose an efficient motion vector recovery algorithm for the new coding standard H.264, which makes use of the Lagrange interpolation formula. In H.264/AVC, a 16$\times$16 macroblock can be divided into different block shapes for motion estimation, and each block has its own motion vector. In the natural video the motion vector is likely to move in the same direction, hence the neighboring motion vectors are correlative. Because the motion vector in H.264 covers smaller area than previous coding standards, the correlation between neighboring motion vectors increases. We can use the Lagrange interpolation formula to constitute a polynomial that describes the motion tendency of motion vectors, and use this polynomial to recover the lost motion vector. The simulation result shows that our algorithm can efficiently improve the visual quality of the corrupted video.

  • PDF

An Efficient Mode Decision Method for Fast Intra Prediction of SVC (SVC에서 빠른 인트라 예측을 위한 효율적인 모드 결정 방법)

  • Cho, Mi-Sook;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.280-283
    • /
    • 2009
  • To improve coding performance of scalable video coding which is an emerging video coding standard as an extension of H.264/AVC, SVC uses not only intra prediction and inter prediction but inter-layer prediction. This causes a problem that computational complexity is increased. In this paper, we propose an efficient intra prediction mode decision method in spatial enhancement layer to reduce the computational complexity. The proposed method selects Inra_BL mode using RD cost of Intra_BL in advance. After that, intra mode is decided by only comparing DC modes. Experimental results show that the proposed method reduces 59% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible.

New Binarization Method of Transformed Coefficient for CABAC In H.264/AVC (H.264/AVC의 CABAC 엔트로피 부호기를 위한 변환 계수의 새로운 이진화 방법)

  • Kim, Dae-Yeon;Lee, Yung-Lyul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.64-74
    • /
    • 2008
  • It is well-known that the coding efficiency of CABAC which is one of the entropy coding methods in H.264/AVC is lower than that of CAVLC at high bitrate in intra coding, even if CABAC shows higher coding efficiency than CAVLC. Therefore, for high quality video application, this paper proposes new binarization methods about the quantized DCT coefficients that are partitioned into four regions such that CABAC shows similar coding efficiency to CAVLC at high bitrate. The proposed binarization methods consist of separate binarization tables about the four partitioned DCT coefficients considering the statistical characteristics of the quantized DCT coefficients. The proposed binarizaton method for the quantized DCT coefficients shows higher coding efficiency than CABAC in H.264/AVC and shows very similar result to CAVLC at high bitrate.

Fast Intra Mode Selection Algorithm Based on Edge Activity in Transform Domain for H.264/AVC Video (변환영역에서의 에지활동도에 기반한 H.264/AVC 고속 인트라모드 선택 방법)

  • Seo, Jae-Sung;Kim, Dong-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.790-800
    • /
    • 2009
  • For the improvement of coding efficiency, the H.264/AYC standard uses new coding tools such as 1/4-pel-accurate motion estimation, multiple references, intra prediction, loop filter, variable block size etc. Using these coding tools, H.264/AYC has achieved significant improvements from rate-distortion point of view compared to existing standards. However, the encoder complexity was greatly increased due to these coding tools. We focus on the complexity reduction method of intra macroblock mode selection. The proposed algorithm for fast intra mode selection calculates the edge activity in transform domain, and performs fast encoding of intra frame in H.264/AYC through the fast prediction mode selection of intra4x4 and chrominance blocks. Simulation results show that the proposed method saves about 59.76% for QCIF sequences and 65.03% for CIF sequences of total encoding time, while bitrate increase and PSNR decrease are very small.

An Efficient Hardware Implementation of CABAC Using H/W-S/W Co-design (H/W-S/W 병행설계를 이용한 CABAC의 효율적인 하드웨어 구현)

  • Cho, Young-Ju;Ko, Hyung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.600-608
    • /
    • 2014
  • In this paper, CABAC H/W module is developed using co-design method. After entire H.264/AVC encoder was developed with C using reference SW(JM), CABAC H/W IP is developed as a block in H.264/AVC encoder. Context modeller of CABAC is included on the hardware to update the changed value during binary encoding, which enables the efficient usage of memory and the efficient design of I/O stream. Hardware IP is co-operated with the reference software JM of H.264/AVC, and executed on Virtex-4 FX60 FPGA on ML410 board. Functional simulation is done using Modelsim. Compared with existing H/W module of CABAC with register-level design, the development time is reduced greatly and software engineer can design H/W module more easily. As a result, the used amount of slice in CABAC is less than 1/3 of that of CAVLC module. The proposed co-design method is useful to provide hardware accelerator in need of speed-up of high efficient video encoder in embedded system.