• Title/Summary/Keyword: H-subspace

Search Result 84, Processing Time 0.029 seconds

SOLVING OPERATOR EQUATIONS Ax = Y AND Ax = y IN ALGL

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.417-424
    • /
    • 2015
  • In this paper the following is proved: Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. If XE = EX for each E ${\in}$ L, then there exists an operator A in AlgL such that AX = Y if and only if sup $\left{\frac{\parallel{XEf}\parallel}{\parallel{YEf}\parallel}\;:\;f{\in}H,\;E{\in}L\right}$ = K < $\infty$ and YE=EYE. Let x and y be non-zero vectors in H. Let Px be the orthogonal pro-jection on sp(x). If EPx = PxE for each E $\in$ L, then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y. (2) < f, Ey > y =< f, Ey > Ey for each E ${\in}$ L and f ${\in}$ H.

HYPERCYCLICITY ON INVARIANT SUBSPACES

  • Petersson, Henrik
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.903-921
    • /
    • 2008
  • A continuous linear operator $T\;:\;X{\rightarrow}X$ is called hypercyclic if there exists an $x\;{\in}\;X$ such that the orbit ${T^nx}_{n{\geq}0}$ is dense. We consider the problem: given an operator $T\;:\;X{\rightarrow}X$, hypercyclic or not, is the restriction $T|y$ to some closed invariant subspace $y{\subset}X$ hypercyclic? In particular, it is well-known that any non-constant partial differential operator p(D) on $H({\mathbb{C}}^d)$ (entire functions) is hypercyclic. Now, if q(D) is another such operator, p(D) maps ker q(D) invariantly (by commutativity), and we obtain a necessary and sufficient condition on p and q in order that the restriction p(D) : ker q(D) $\rightarrow$ ker q(D) is hypercyclic. We also study hypercyclicity for other types of operators on subspaces of $H({\mathbb{C}}^d)$.

SKEW-ADJOINT INTERPOLATION ON Ax-y IN $ALG\mathcal{L}$

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$, be the projection onto sp(x). If $P_xE=EP_x$ for each $ E \in \cal{L}$ then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in ($sp(x)^\perp$) and $A=-A^\ast$. (2) (equation omitted)

  • PDF

CIRCLE-FOLIATED MINIMAL SURFACES IN 4-DIMENSIONAL SPACE FORMS

  • PARK, SUNG-HO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1433-1443
    • /
    • 2015
  • Catenoid and Riemann's minimal surface are foliated by circles, that is, they are union of circles. In $\mathbb{R}^3$, there is no other nonplanar example of circle-foliated minimal surfaces. In $\mathbb{R}^4$, the graph $G_c$ of w = c/z for real constant c and ${\zeta}{\in}\mathbb{C}{\backslash}\{0}$ is also foliated by circles. In this paper, we show that every circle-foliated minimal surface in $\mathbb{R}$ is either a catenoid or Riemann's minimal surface in some 3-dimensional Affine subspace or a graph surface $G_c$ in some 4-dimensional Affine subspace. We use the property that $G_c$ is circle-foliated to construct circle-foliated minimal surfaces in $S^4$ and $H^4$.

New Sound Spectral Analysis of Prosthetic Heart Valve (인공판막음의 새로운 스펙트럼 분석 연구)

  • Lee, H.J.;Kim, S.H.;Chang, B.C.;Tack, G.;Cho, B.K.;Yoo, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.75-78
    • /
    • 1997
  • In this paper we present new sound spectral analysis methods or prosthetic heart valve sounds. Phonocardiograms(PCG) of prosthetic heart valve were analyzed in order to derive frequency domain feature suitable or the classification of the valve state. The fast orthogonal search method and MUSIC (MUltiple SIgnal Classification) method are described or finding the significant frequencies in PCG. The fast orthogonal search method is effective with short data records and cope with noisy, missing and unequally-spaced data. MUSIC method's key to the performance is the division of the information in the autocorrelation matrix or the data matrix into two vector subspaces, one a signal subspace and the other a noise subspace.

  • PDF

PSEUDO-CHEBYSHEV SUBSPACES IN $L^1$

  • Mohebi, H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.585-595
    • /
    • 2000
  • We give various characterizations of pseudo -Chebyshev Subspaces in the spaces $L^1$(S,${\mu}$) and C(T).

EQUATIONS AX = Y AND Ax = y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho;Park, Dong-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.399-411
    • /
    • 2006
  • Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. Let P be the projection onto $\frac\;{R(X)}$, where RX is the range of X. If PE = EP for each $E\;\in\;L$, then there exists an operator A in AlgL such that AX = Y if and only if $$sup\{{\parallel}E^{\bot}Yf{\parallel}/{\parallel}E^{\bot}Xf{\parallel}\;:\;f{\in}H,\; E{\in}L}=K\;<\;\infty$$ Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel} = K.$ Let x and y be vectors in H and let $P_x$ be the projection onto the singlely generated space by x. If $P_xE = EP_x$ for each $E\inL$, then the assertion that there exists an operator A in AlgL such that Ax = y is equivalent to the condition $$K_0\;:\;=\;sup\{{\parallel}E^{\bot}y{\parallel}/{\parallel}E^{\bot}x\;:\;E{\in}L}=<\;\infty$$ Moreover, we may choose an operator A such that ${\parallel}A{\parallel} = K_0$ whose norm is $K_0$ under this case.

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG$\cal{L}$

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.981-986
    • /
    • 2011
  • Given vectors x and y in a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i=y_i$, for i = 1, 2, ${\cdots}$, n. In this paper the following is proved : Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE=EP_x$ for each $E{\in}\cal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\cal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A=A^*$. (2) sup $sup\;\{\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}\;:\;E\;{\in}\;{\cal{L}}\}$ < ${\infty}$, $y\;{\in}\;sp(x)$ and < x, y >=< y, x >.