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CIRCLE-FOLIATED MINIMAL SURFACES IN

4-DIMENSIONAL SPACE FORMS

Sung-Ho Park

Abstract. Catenoid and Riemann’s minimal surface are foliated by cir-
cles, that is, they are union of circles. In R3, there is no other nonpla-
nar example of circle-foliated minimal surfaces. In R4, the graph Gc of
w = c/z for real constant c and ζ ∈ C\{0} is also foliated by circles. In this
paper, we show that every circle-foliated minimal surface in Rn is either
a catenoid or Riemann’s minimal surface in some 3-dimensional Affine
subspace or a graph surface Gc in some 4-dimensional Affine subspace.
We use the property that Gc is circle-foliated to construct circle-foliated

minimal surfaces in S4 and H4.

1. Introduction

A surface M ∈ Rn is said to be circle-foliated if there is a one-parameter
family of planes whose intersection with M are circles. The catenoid and
Riemann’s minimal surface are examples of circle-foliated minimal surfaces in
R3. Enneper proved that the planes containing the circles of a circle-foliated
minimal surface in R3 should be parallel [2] and [7]. Then it is easy to see that
the plane, catenoid and Riemann’s minimal surface are the only circle-foliated
minimal surfaces in R3 [7].

One may consider R4 as C2 with complex coordinates (z, w). For a real
constant c 6= 0, the graph Gc = {(w, z) ∈ C2 |wz = c} is circle-foliated. In
fact, the image gr of the circle {|z| = r} on the z-plane is {(z, c/z) | |z| = r}.
Considering C2 as R4, gr lies on the plane through (0, 0, 0, 0), (1, 0,−r2, 0)
and (0, 1, 0, r2) (cf. Remark 2). Since |(z, c/z)|2 = r2 + c2/r2, gr is a circle.
Therefore Gc is circle-foliated. Since every complex submanifold of a Kaehler
manifold is minimal [6], Gc is minimal. Moreover, Gc is complete, doubly-
connected and has finite total curvature −4π with two planar ends, which are
asymptotic to the planes {z = 0} and {w = 0} (cf. Remark 2). Hoffman and
Osserman classified complete simply-connected and doubly-connected minimal
surfaces in Rn with total curvature −4π including Gc [4]. They showed that
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such minimal surfaces are foliated by ellipses or circles, and called them as the
skew catenoids.

In this paper, we show that every circle-foliated minimal surface in Rn is
either a catenoid or a Riemann’s minimal surface in a 3-dimensional Affine
subspace or the graph surface Gc in a 4-dimensional Affine subspace. Therefore
there is no counterpart of the Riemann’s minimal surface in Rn, for n ≥ 4. We
then use this property of Gc to construct circle-foliated minimal surfaces in S4

and H4.

2. Circle-foliated minimal surfaces in Rn

Let Σ be a circle-foliated surface in Rn. Let {Pt} be the one-parameter

family of planes on which the circles of the foliation is on. Let P̃t be the plane
parallel to Pt and passes through the origin of Rn. There is a one-parameter
family of orthonormal basis of Rn satisfying Frenet type equations [3].

Theorem A. Let {P̃t} be a smooth one-parameter family of planes in R
n.

There is a one-parameter family of orthonormal basis e1(t), e2(t), . . . , en(t) of

Rn such that e1(t) and e2(t) span P̃t, and the following equations hold

(1)

e′i = αj
iej + κie2+i

e′2+i = −κiei + τ lie2+l + γλi e4+λ

e′4+ξ = −γξl e2+l + βλ
ξ e4+λ

(i, l = 1, 2)
(λ = 1, . . . , n− 4)

(αj
i = −αi

j , τ
l
i = −τ il , βλ

i = −βi
λ),

where
(

κ1
)2 ≥

(

κ2
)2
, and ′ = d

dt .

Using the above orthonormal basis of Rn, we can parameterize a circle-
foliated surface by

(2) X(t, θ) = c(t) + r(t)(cos θe1 + sin θe2),

where c(t) and r(t) are the center and the radius of the circle on Pt.

Theorem 1. Circle-foliated minimal surface in Rn is either i) a catenoid or

a Riemann’s minimal surface in 3-dimensional Affine subspace or ii) a graph

surface Gc (defined in §1) in some 4-dimensional Affine subspace.

To prove the above theorem, we have to show that every circle-foliated min-
imal surface in Rn, n ≥ 5, actually lies in a (at most) 4-dimensional Affine
subspace. First, let us assume that a circle-foliated surface X lies in R5. (The
case of n ≥ 6 is analogous to the case of R5.) For the simplicity of notations,
we write (1) as

(3)
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Let c′(t) =
∑5

i=1
αiei, where αi’s are smooth functions. Then we have

Xt = (α1 + r′ cos θ + rβ sin θ)e1 + (α2 + r′ sin θ − rβ cos θ)e2

+ (α3 − rκ cos θ)e3 + (α4 + rτ sin θ)e4 + α5e5,

Xθ = − r sin θe1 + r cos θe2.

Let N be a normal vector of X given by

(4) N = cos θe1 + sin θe2 + γe3 + δe4 + ρe5.

Then γ, δ and ρ satisfy

Xt ·N = α1 cos θ + α2 sin θ + r′ + γ(α3 − rκ cos θ)

+ δ(α4 + rτ sin θ) + ρα5 = 0.
(5)

Let E, F , G be the coefficients of the first fundamental form of X . Then

E = |Xt|2

=

5
∑

i=1

α2
i + r′

2
+ r2β2 + 2r′α1 cos θ + 2r′α2 sin θ

+ 2rα1β sin θ − 2rα2β cos θ − 2rα3κ cos θ

+ r2(κ2 − τ2)(cos θ)2 + 2rα4τ sin θ + r2τ2,

F = Xt ·Xθ = −rα1 sin θ + rα2 cos θ − r2β,

G = |Xθ|2 = r2.

Lemma 1. The surface X(t, θ) defined by (2) with τ 6= 0 is minimal only if

i) αi = 0 for all i = 1, . . . , 5, ii) µ = ν = 0 and iii) κ2 = τ2, βκ = τη and

βτ = κτ . Hence X(t, θ) lies in a 4-dimensional Affine subspace.

Proof. Let l = Xtt ·N , m = Xtθ ·N and n = Xθθ ·N , where N is given by (4).
Since X(t, θ) is minimal, we must have

H := lG+ nE − 2mF = 0.

Direct computation shows that

(6) H =

r2







































α′
1 cos θ + r′′ + α2β cos θ − α1β sin θ + α′

2 sin θ − rβ2

+α3κ cos θ − rκ2(cos θ)2 − α4τ sin θ − rτ2(sin θ)2

+γ

(

α′
3 − 2r′κ cos θ − α1κ− rκ′ cos θ

−rβκ sin θ + α4η + rτη sin θ + α5ν

)

+δ

(

α′
4 + 2r′τ sin θ + α2τ + rτ ′ sin θ

−rβτ cos θ − α3η + rκη cos θ + α5µ

)

+ρ
(

α′
5 + rκν cos θ − α3ν − α4µ− rτµ sin θ

)







































−r







∑5

i=1
α2
i + r′

2
+ r2β2 + 2r′α1 cos θ + 2r′α2 sin θ

+2rα1β sin θ − 2rα2β cos θ − 2rα3κ cos θ
+r2(κ2 − τ2)(cos θ)2 + 2rα4τ sin θ + r2τ2







−2(rβ + rγκ sin θ + rδτ cos θ)(−rα1 sin θ + rα2 cos θ − r2β).
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Since γ, δ and ρ satisfy (5), we first let γ = −(α1 cos θ+α2 sin θ+ r′)/(α3 −
rκ cos θ), δ = ρ = 0 and S := H(α3− rκ cos θ). Then the coefficients of cos(3θ)
and sin(3θ) of S are r2κ

(

r2(κ2 − τ2) + α2
1 − α2

2

)

/2 and r2κα1α2 respectively.

Since these should be equal to zero and κ2 ≥ τ2, we necessarily have α1 = 0.
Let δ = −(α2 sin θ+r

′)/(α4+rτ sin θ), γ = ρ = 0 and T := H(α4+rτ cos θ).
The coefficients of cos(2θ) of S and sin(2θ) of T are r3

(

−5α3κ
2+ 2α3τ

2+ α2τη
)

and
(

3r3α3κτ − r3α2κη
)

/2 respectively, which are equal to 0. Hence we have

either κ2 − τ2 = 0 or α3 = 0. On the other hand, the coefficient of cos(3θ) of
T is −r4τ

(

κ2 − τ2
)

, which implies that κ2 = τ2. Then we have α2 = 0, and

since we assumed that τ2 > 0, we also have α3 = 0. Substituting these into S,
we have α4 = 0 from the coefficient of sin(2θ).

Suppose that α5 6= 0, and let γ = δ = 0 and ρ = −r′/α5. Then H becomes

r2[r′′ − 2rκ2(cos θ)2 − 2rτ2(sin θ)2 − r′

α5

(α′
5 + rκν cos θ − rτν sin θ)]

−r(α2
5 + r′

2
).

Therefore we have κ = τ = 0, which contradicts the assumption κ, τ 6= 0. From
(5), (6) and α5 = 0, it follows that µ = ν = 0. This completes the proofs of i)
and ii).

From the coefficients of sin θ of S and cos θ of T , we have

(7) βκ = τη

and

(8) βτ = κη.

Since µ = ν = 0 and αi = 0 for all i = 1, . . . , 5, the surface X(t, θ) lies in a
4-dimensional Affine subspace. �

Remark 1. When n ≥ 6 and X(t, θ) is minimal, it is easy to see in the above
proof that αk = 0 for k ≥ 5 and γλi = 0 and βλ

ξ = 0. Hence X(t, θ) should lie
in a 4-dimensional Affine subspace.

Lemma 2. If the surface X(t, θ) defined by (2) is minimal with τ ≡ 0, then

the planes P̃ lie in some 3-dimensional Affine subspace.

Proof. When τ ≡ 0, we consider two cases; α4 ≡ 0 or α4 6≡ 0. First of all, we
have α1 = 0 as in the proof of the above lemma. If τ ≡ 0 and α4 6≡ 0, then we
let γ = ρ = 0 and δ = −(α2 sin θ + r′)/α4. The coefficient of cos(2θ) of H is
−2r3κ3. Since this must be 0, we have κ ≡ 0. Then η, ν and µ can be chosen
to be zero, and p̃ are parallel planes in a 3-dimensional Affine subspace.

If α4 ≡ 0, then H is independent of the choice of δ. Hence we have η ≡ 0 and
α5µ ≡ 0. If α5 ≡ 0, then we should have ν ≡ 0. From (3), e4 and e5 are inde-
pendent of e1, e2 and e3, and p̃ lie in a 3-dimensional Affine subspace. If α5 6≡ 0,
let γ = δ = 0 and ρ = −(α2 sin θ + r′)/α5. Then the coefficient of cos(2θ) of
α5H is −2r3κ, which should be 0. Therefore e1 and e2 are independent of e3,
e4 and e5, and p̃ lie in a 3-dimensional Affine subspace. �
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Lemma 3. The circle-foliated minimal surfaces in R4 of Lemma 1 is the graph

Gc for some real c.

Proof. From (7), (8) and κ2 = τ2, we see that β2 = κ2 = τ2 = η2. Suppose that
β = κ and τ = η (the case β = −κ and τ = −η can be dealt with in the same
way). It follows that (e2+e3)

′ = 0 and (e1±e4)′ = 0 (depending on the sign of

κ/τ). We may suppose that e1 + e4 = (0, 0, 0,
√
2) and e2 + e3 = (0, 0,

√
2, 0).

Then we have

e1 =
1√
2
(cosψ(t), sinψ(t), 0, 1),

e2 =
1√
2
(cosφ(t), sin φ(t), 1, 0),

e3 =
1√
2
(− cosφ(t),− sin φ(t), 1, 0),

e4 =
1√
2
(− cosψ(t),− sinψ(t), 0, 1).

From e′1 = −βe2 + βe3, we see that 2β = ±ψ′. If ψ′ = 2β, then we have
ψ = π/2 + φ. Moreover e′3 = −βe1 + τe4 implies that β = η. Similarly, when
ψ′ = −2β, we have κ = η. Therefore we may assume that β = κ = τ = η = 1.
Then direct computation shows that

H = r
(

rr′′ − 3r′
2 − 2r2

)

for the normals of X(t, θ) corresponding to the cases i) γ = −r′/r cos θ, δ = 0
and ii) γ = 0, δ = r′/r sin θ. Hence r satisfies

(9) rr′′ − 3r′
2 − 2r2 = 0.

The solution of (9) is r = C1(cos(2t+C2))
−1/2, where C1 and C2 are constants.

We may let C1 = c and C2 = 0 and −π/4 < t < π/4. Let A be the 4 × 4
orthogonal matrix given by

A =
1√
2









1 0 0 1
0 −1 1 0
0 1 1 0
−1 0 0 1









.

Then X̃(t, θ) = A ◦X(t, θ) represents the graph

Gc =

{(

ζ,
c

ζ

)

| ζ ∈ C− {0}
}

.
�

Remark 2. i) The parametrization of Gc is given by

X̃(t, θ) =
(

r cos θ, r sin θ,
c

r
cos θ,− c

r
sin θ

)

.

Clearly, Gc has two ends that are asymptotic to the planes {(w, z) |w = 0} and
{(w, z) | z = 0}.
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ii) Let gr =
(

r cos θ, r sin θ, cr cos θ,− c
r sin θ

)

be the circle on Gc for fixed r.
The geodesic curvature of gr is

κg =
r|c2 − r4|

(c2 + r4)3/2
.

Hence we have
∫

gr

κg ds = 2π
|c2 − r4|
c2 + r4

.

Since Gc is doubly-connected, Gauss-Bonnet theorem implies that
∫

Gc

K dA = − lim
r→0

∫

gr

κg ds− lim
r→∞

∫

gr

κg ds = −4π.

3. Circle-foliated minimal surfaces in S4 and H4

To construct a circle-foliated minimal surface in S4, we consider R4 with

the conformal metric ds2s = ds20/ ((1 + 〈x, x〉)/2)2, where ds20 is the Euclidean
metric of R4 and 〈, 〉 is the Euclidean inner product. Let Hs and H0 be the
mean curvatures of a surface M in R4 with respect to the metrics ds2s and ds20
respectively with respect to fixed Euclidean normal N satisfying (4). We have

Hs =
1+ 〈x, x〉

2|N | H0 +

〈

x,
N

|N |

〉

.

Similarly, to construct a circle-foliated minimal surfaces in H4, we equip the

conformal metric ds2h = ds20/ ((1 − 〈x, x〉)/2)2 on the unit ball B(O, 1) of R4.
Then the mean curvature Hh of a surface M in B(O, 1) with respect to ds2h
satisfies

Hh =
1− 〈x, x〉

2|N | H0 −
〈

x,
N

|N |

〉

.

Examples of circle-foliated minimal surfaces in S4 and H4. Let e1, e2
be defined as in the proof of Theorem 3:

e1 =
1√
2
(− sin 2t, cos 2t, 0, 1),

e2 =
1√
2
(cos 2t, sin 2t, 1, 0).

(10)

The mean curvature of the circle-foliated surface

(11) X(t, θ) = r(t) (cos θe1 + sin θe2)

satisfies

H0 |N | =
r
(

rr′′ − 3r′
2 − 2r2

)

2r2
(

r2 + r′2
) .
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Hence as a surface in S4, X(t, θ) has mean curvature

Hs |N | = 1 + r2

2
·
r
(

rr′′ − 3r′
2 − 2r2

)

2r2
(

r2 + r′2
) + r

for all normal direction. Therefore the circles centered at the origin on the
planes spanned by e1(t), e2(t) with radius function r(t) satisfying

(12)
1 + r2

2
· rr

′′ − 3r′
2 − 2r2

2r2
(

r2 + r′2
) + 1 = 0

define a circle-foliated minimal surface in S4.

Lemma 4. Solution of (12) with the initial conditions

r(0) = a2 > 0 and r′(0) = 0

is periodic.

Proof. Note that if r(t) is a solution of (12), then r(−t) is also a solution of
(12). Hence each solution r of (12) is an even function. Moreover if r′(t1) = 0,
then r(t1 + t) = r(t1 − t). Therefore it suffices to show that r′(t1) = 0 for some
t1 > 0.

Suppose that r′ does not vanish except for t = 0, therefore, r′(t) > 0 for all
t > 0. From (12), we have

(13) r′′ =

(

3− r2
)

r′
2
+ 2r2

(

1− r2
)

r (1 + r2)
.

We may assume that a < 1. Then we have r′′(0) > 0 and r′(t) > 0 for t close
to 0. If r is not bounded, then r′′ → −∞ as t → ∞ by (13). Then r′ → −∞,
which contradicts r′(t) > 0 for all t > 0.

If r is bounded, then r′′ → 0 and r′ → 0 as t → ∞. From (13) and the
fact that r′′ → 0 as t → ∞, it follows that r ր 1 as t → ∞. From (13),
we have r′′(t) > 0 for all t > 0. On the other hand, since r is bounded and
increasing, we should have r′′(t) < 0 for sufficiently large t. Hence we conclude
that r′(t1) = 0 for some t1 and r is periodic. �

To estimate the period of (13), we use the integrating factor to obtain a first
integral

(

1 + r2
)4

r6
(r′)

2
+

(

1

r4
+

4

r2
+ 4r2 + r4

)

= C,

or

(14)

(

r +
1

r

)4(

r′

r

)2

+

(

r +
1

r

)4

= C.
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We suppose that r′(0) = 0 and the minimum value rmin is attained at t = 0,
that is, rmin = r(0). Then

C =

(

rmin +
1

rmin

)4

.

Let rmax be the maximum value of r and rmax = r(tmax) so that the period of
r is 2 tmax. Then have

rmin =
1

rmax

.

Since r is strictly increasing on (0, tmax), we consider the inverse function
t = t(r) of r(t). From (14), we have

t′
2
=

1

r2

(

r2 + 1
)4

Cr4 − (r2 + 1)4
.

Then

tmax =

∫ rmax

rmin

1

r

(

r2 + 1
)2

√

Cr4 − (r2 + 1)4
dr.

Since 1/r also satisfies (12), we have

tmax = 2

∫ 1

rmin

1

r

(

r2 + 1
)2

√

Cr4 − (r2 + 1)
4
dr.

Substituting R = r2, we get

(15) tmax = 2

∫ 1

r2
min

1

2R

(R+ 1)2
√

CR2 − (R+ 1)4
dR.

For convenience, we let c2 = C with c ≥ 4, p =
√

(c+ 4)/c and k2 = (c +
4)/(c− 4).

Substituting R = (ρ− p)/(ρ+ p), we have

dR
√

c2R2 − (R + 1)4
=

2p dρ
√

(c+ 4)(ρ2 − 1) ((c− 4)ρ2 − (c+ 4))

=
2

√

c(c− 4)

dρ
√

(ρ2 − 1)(ρ2 − k2)
.

Then (15) becomes

tmax =
8

√

c(c− 4)

∫ ∞

ρ0

ρ2 dρ

(ρ2 − p2)
√

(ρ2 − 1)(ρ2 − k2)
,

where ρ0 = p(1 + r2min)/(1− r2min) = k.
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Substituting τ = k/ρ, we get

tmax =
8

√

c(c+ 4)

∫ 1

0

dτ
(

1−
(

p
k

)2
τ2
)
√

(1− τ2)
(

1− τ2

k2

)

(16)

=
8

√

c(c+ 4)
Π

(

c− 4

c
| c− 4

c+ 4

)

,

where Π ((c− 4)/c | (c− 4)/(c+ 4)) is the complete elliptic integral of the third
kind. For the following lemma, we introduce the elliptic integral of the 1st kind
F (φ, α) and the elliptic integral of the 2nd kind E(φ, α):

F (φ, α) =

∫ φ

0

dθ
√

1− sin2 α sin2 θ
,

E(φ, α) =

∫ φ

0

√

1− sin2 α sin2 θ dθ.

Moreover, K(α) = F (π/2, α) and E(α) = E(π/2, α) are the complete elliptic
integrals of the first and second kinds respectively. Letting k = sinα, we also
let E(k) = E(π/2 ; k), K(k) = F (π/2 ; k).

Note that c2 = (rmin + 1/rmin)
2
. If c → 4 or rmin → 1, then tmax → π/

√
2.

In this case, we have r ≡ 1 and the resulting minimal surface is a torus.

Lemma 5. As a function of c ≥ 4, tmax is decreasing and satisfies

lim
c→∞

tmax =
π

2
.

Hence the period of the solution of (12) is between π and
√
2π.

Proof. Straightforward computation shows that

d

dc

(

8
√

c(c+ 4)
Π

(

c− 4

c
| c− 4

c+ 4

)

)

=
E
(

c−4

c+4

)

−K
(

c−4

c+4

)

2(c− 4)
√

c(c+ 4)
.

Since

E

(

c− 4

c+ 4

)

−K

(

c− 4

c+ 4

)

< 0,

tmax is a decreasing function of c.
Let α = sin−1

√

(c− 4)/(c+ 4) with 0 < α < π/2 and let ν = (c − 4)/c.
According to [1], the integral Π ((c− 4)/c ;π/2, (c− 4)/(c+ 4)) = Π (ν;π/2, α)
belongs to the circular case with sin2 α < ν < 1, and

Π (ν;π/2, α) = K(α) +
π

2
δ2 (1− Λ0(φ, α)) ,

where Λ0 is the Heuman’s Lambda function satisfying

Λ0(φ, α) =
2

π
[K(α) (E(φ, π/2− α)− F (φ, π/2 − α)) + E(α)F (φ, π/2 − α)] ,
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and

δ2 =

√

ν/(1− ν)(ν − sin2 α) =
√

c(c+ 4)/4,

φ = sin−1
√

(1− ν)/ cos2 α = sin−1
√

(c+ 4)/2c.

Therefore φ→ π/4 and α → π/2 as c→ ∞.
Clearly,

lim
c→∞

(E(φ, π/2 − α)− F (φ, π/2− α)) = − lim
c→∞

∫ φ

0

cos2 α sin2 θ
√

1− cos2 α sin2 θ
dθ.

We note that cosα =
√

8/(c+ 4) and that limαրπ/2 cosαK(α) = 0 (cf.
Lemma 8 of [5]). Then

lim
c→∞

tmax = lim
c→∞

8
√

c(c+ 4)
Π (ν;π/2, α) =

π

2
.

�

Theorem 2. The circle-foliated surface given by (11) with e1, e2 satisfying

(10) and r satisfying (12) defines a one-parameter family of circle-foliated min-

imal surfaces in S4. Moreover, the radius function r is periodic with the period

between π and
√
2π. Hence there are infinitely many circle-foliated immersed

minimal tori in S
4.

In H4, we let e1, e2 and X(t, θ) be as in (10) and (11). Then the mean
curvature of X(t, θ) with respect to ds2h satisfies

Hh |N | = 1− r2

2
·
r
(

rr′′ − 3r′
2 − 2r2

)

2r2
(

r2 + r′2
) − r

with N satisfying (4). Hence if X(t, θ) is minimal, then r satisfies

1− r2

2
· rr

′′ − 3r′
2 − 2r2

2r2
(

r2 + r′2
) − 1 = 0.(17)

We note that r′′ blows up as r → 1, whenX(t, θ) approaches the ideal boundary
of H4. For each initial condition r(0) = b2 < 1, r′(0) = 0 of (17), X(t, θ) gives
a complete circle-foliated minimal surface in H4.

Theorem 3. The parametrization (11) with e1, e2 satisfying (10) and r sat-

isfying (17) gives a one-parameter family of circle-foliated minimal surfaces in

H4.
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