Bull. Korean Math. Soc. ${\bf 52}$ (2015), No. 5, pp. 1433–1443 http://dx.doi.org/10.4134/BKMS.2015.52.5.1433

CIRCLE-FOLIATED MINIMAL SURFACES IN 4-DIMENSIONAL SPACE FORMS

SUNG-HO PARK

ABSTRACT. Catenoid and Riemann's minimal surface are foliated by circles, that is, they are union of circles. In \mathbb{R}^3 , there is no other nonplanar example of circle-foliated minimal surfaces. In \mathbb{R}^4 , the graph G_c of w = c/z for real constant c and $\zeta \in \mathbb{C} \setminus \{0\}$ is also foliated by circles. In this paper, we show that every circle-foliated minimal surface in \mathbb{R}^n is either a catenoid or Riemann's minimal surface in some 3-dimensional Affine subspace or a graph surface G_c in some 4-dimensional Affine subspace. We use the property that G_c is circle-foliated to construct circle-foliated minimal surfaces in S^4 and H^4 .

1. Introduction

A surface $M \in \mathbb{R}^n$ is said to be circle-foliated if there is a one-parameter family of planes whose intersection with M are circles. The catenoid and Riemann's minimal surface are examples of circle-foliated minimal surfaces in \mathbb{R}^3 . Enneper proved that the planes containing the circles of a circle-foliated minimal surface in \mathbb{R}^3 should be parallel [2] and [7]. Then it is easy to see that the plane, catenoid and Riemann's minimal surface are the only circle-foliated minimal surfaces in \mathbb{R}^3 [7].

One may consider \mathbb{R}^4 as \mathbb{C}^2 with complex coordinates (z, w). For a real constant $c \neq 0$, the graph $G_c = \{(w, z) \in \mathbb{C}^2 | wz = c\}$ is circle-foliated. In fact, the image g_r of the circle $\{|z| = r\}$ on the z-plane is $\{(z, c/z) | |z| = r\}$. Considering \mathbb{C}^2 as \mathbb{R}^4 , g_r lies on the plane through (0, 0, 0, 0), $(1, 0, -r^2, 0)$ and $(0, 1, 0, r^2)$ (cf. Remark 2). Since $|(z, c/z)|^2 = r^2 + c^2/r^2$, g_r is a circle. Therefore G_c is circle-foliated. Since every complex submanifold of a Kaehler manifold is minimal [6], G_c is minimal. Moreover, G_c is complete, doublyconnected and has finite total curvature -4π with two planar ends, which are asymptotic to the planes $\{z = 0\}$ and $\{w = 0\}$ (cf. Remark 2). Hoffman and Osserman classified complete simply-connected and doubly-connected minimal surfaces in \mathbb{R}^n with total curvature -4π including G_c [4]. They showed that

 $\odot 2015$ Korean Mathematical Society

Received February 10, 2014; Revised May 24, 2014.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53A10,\ 53C12.$

Key words and phrases. circle-foliated surface, minimal surface in \mathbb{S}^4 and \mathbb{H}^4 .

This work was supported by Hankuk University of Foreign Studies Research Fund.

¹⁴³³

such minimal surfaces are foliated by ellipses or circles, and called them as the *skew catenoids*.

In this paper, we show that every circle-foliated minimal surface in \mathbb{R}^n is either a catenoid or a Riemann's minimal surface in a 3-dimensional Affine subspace or the graph surface G_c in a 4-dimensional Affine subspace. Therefore there is no counterpart of the Riemann's minimal surface in \mathbb{R}^n , for $n \geq 4$. We then use this property of G_c to construct circle-foliated minimal surfaces in \mathbb{S}^4 and \mathbb{H}^4 .

2. Circle-foliated minimal surfaces in \mathbb{R}^n

Let Σ be a circle-foliated surface in \mathbb{R}^n . Let $\{P_t\}$ be the one-parameter family of planes on which the circles of the foliation is on. Let \tilde{P}_t be the plane parallel to P_t and passes through the origin of \mathbb{R}^n . There is a one-parameter family of orthonormal basis of \mathbb{R}^n satisfying Frenet type equations [3].

Theorem A. Let $\{\tilde{P}_t\}$ be a smooth one-parameter family of planes in \mathbb{R}^n . There is a one-parameter family of orthonormal basis $e_1(t), e_2(t), \ldots, e_n(t)$ of \mathbb{R}^n such that $e_1(t)$ and $e_2(t)$ span \tilde{P}_t , and the following equations hold

$$\begin{array}{ll} e_{i}' = \alpha_{i}^{j} e_{j} + \kappa^{i} e_{2+i} & (i,l=1,2) \\ (1) & e_{2+i}' = -\kappa^{i} e_{i} + \tau_{i}^{l} e_{2+l} + \gamma_{i}^{\lambda} e_{4+\lambda} & (\lambda=1,\ldots,n-4) \\ & e_{4+\xi}' = -\gamma_{l}^{\xi} e_{2+l} + \beta_{\xi}^{\lambda} e_{4+\lambda} & (\alpha_{i}^{j} = -\alpha_{j}^{i}, \ \tau_{i}^{l} = -\tau_{l}^{i}, \ \beta_{i}^{\lambda} = -\beta_{\lambda}^{i}), \end{array}$$

where $(\kappa^1)^2 \ge (\kappa^2)^2$, and $' = \frac{d}{dt}$.

Using the above orthonormal basis of \mathbb{R}^n , we can parameterize a circlefoliated surface by

(2)
$$X(t,\theta) = c(t) + r(t)(\cos\theta e_1 + \sin\theta e_2),$$

where c(t) and r(t) are the center and the radius of the circle on P_t .

Theorem 1. Circle-foliated minimal surface in \mathbb{R}^n is either i) a catenoid or a Riemann's minimal surface in 3-dimensional Affine subspace or ii) a graph surface G_c (defined in §1) in some 4-dimensional Affine subspace.

To prove the above theorem, we have to show that every circle-foliated minimal surface in \mathbb{R}^n , $n \geq 5$, actually lies in a (at most) 4-dimensional Affine subspace. First, let us assume that a circle-foliated surface X lies in \mathbb{R}^5 . (The case of $n \geq 6$ is analogous to the case of \mathbb{R}^5 .) For the simplicity of notations, we write (1) as

(3)
$$\begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{pmatrix}' = \begin{pmatrix} 0 & -\beta & -\kappa & 0 & 0 \\ \beta & 0 & 0 & \tau & 0 \\ \kappa & 0 & 0 & -\eta & -\nu \\ 0 & -\tau & \eta & 0 & -\mu \\ 0 & 0 & \nu & \mu & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \end{pmatrix}.$$

Let
$$c'(t) = \sum_{i=1}^{5} \alpha_i e_i$$
, where α_i 's are smooth functions. Then we have
 $X_t = (\alpha_1 + r' \cos \theta + r\beta \sin \theta)e_1 + (\alpha_2 + r' \sin \theta - r\beta \cos \theta)e_2$
 $+ (\alpha_3 - r\kappa \cos \theta)e_3 + (\alpha_4 + r\tau \sin \theta)e_4 + \alpha_5 e_5,$
 $X_{\theta} = -r \sin \theta e_1 + r \cos \theta e_2.$

Let N be a normal vector of X given by

(4)
$$N = \cos \theta e_1 + \sin \theta e_2 + \gamma e_3 + \delta e_4 + \rho e_5.$$

Then γ , δ and ρ satisfy

(5)
$$X_t \cdot N = \alpha_1 \cos \theta + \alpha_2 \sin \theta + r' + \gamma (\alpha_3 - r\kappa \cos \theta) \\ + \delta(\alpha_4 + r\tau \sin \theta) + \rho \alpha_5 = 0.$$

Let E, F, G be the coefficients of the first fundamental form of X. Then

$$E = |X_t|^2$$

= $\sum_{i=1}^{5} \alpha_i^2 + r'^2 + r^2 \beta^2 + 2r' \alpha_1 \cos \theta + 2r' \alpha_2 \sin \theta$
+ $2r \alpha_1 \beta \sin \theta - 2r \alpha_2 \beta \cos \theta - 2r \alpha_3 \kappa \cos \theta$
+ $r^2 (\kappa^2 - \tau^2) (\cos \theta)^2 + 2r \alpha_4 \tau \sin \theta + r^2 \tau^2$,
 $F = X_t \cdot X_\theta = -r \alpha_1 \sin \theta + r \alpha_2 \cos \theta - r^2 \beta$,
 $G = |X_\theta|^2 = r^2$.

Lemma 1. The surface $X(t,\theta)$ defined by (2) with $\tau \neq 0$ is minimal only if i) $\alpha_i = 0$ for all i = 1, ..., 5, ii) $\mu = \nu = 0$ and iii) $\kappa^2 = \tau^2$, $\beta \kappa = \tau \eta$ and $\beta \tau = \kappa \tau$. Hence $X(t,\theta)$ lies in a 4-dimensional Affine subspace.

Proof. Let $l = X_{tt} \cdot N$, $m = X_{t\theta} \cdot N$ and $n = X_{\theta\theta} \cdot N$, where N is given by (4). Since $X(t, \theta)$ is minimal, we must have

$$\mathcal{H} := lG + nE - 2mF = 0.$$

Direct computation shows that

$$(6) \quad \mathcal{H} = \begin{cases} \alpha_1' \cos \theta + r'' + \alpha_2 \beta \cos \theta - \alpha_1 \beta \sin \theta + \alpha_2' \sin \theta - r\beta^2 \\ + \alpha_3 \kappa \cos \theta - r\kappa^2 (\cos \theta)^2 - \alpha_4 \tau \sin \theta - r\tau^2 (\sin \theta)^2 \\ + \gamma \left(\begin{array}{c} \alpha_3' - 2r' \kappa \cos \theta - \alpha_1 \kappa - r\kappa' \cos \theta \\ -r\beta \kappa \sin \theta + \alpha_4 \eta + r\tau\eta \sin \theta + \alpha_5 \nu \end{array} \right) \\ + \delta \left(\begin{array}{c} \alpha_4' + 2r' \tau \sin \theta + \alpha_2 \tau + r\tau' \sin \theta \\ -r\beta \tau \cos \theta - \alpha_3 \eta + r\kappa\eta \cos \theta + \alpha_5 \mu \end{array} \right) \\ + \rho \left(\alpha_5' + r\kappa\nu \cos \theta - \alpha_3 \nu - \alpha_4 \mu - r\tau\mu \sin \theta \end{array} \right) \\ - r \left\{ \begin{array}{c} \sum_{i=1}^5 \alpha_i^2 + r'^2 + r^2\beta^2 + 2r'\alpha_1 \cos \theta + 2r'\alpha_2 \sin \theta \\ + 2r\alpha_1\beta \sin \theta - 2r\alpha_2\beta \cos \theta - 2r\alpha_3\kappa \cos \theta \\ + r^2(\kappa^2 - \tau^2)(\cos \theta)^2 + 2r\alpha_4\tau \sin \theta + r^2\tau^2 \end{array} \right\} \\ - 2(r\beta + r\gamma\kappa \sin \theta + r\delta\tau \cos \theta)(-r\alpha_1 \sin \theta + r\alpha_2 \cos \theta - r^2\beta). \end{cases}$$

Since γ , δ and ρ satisfy (5), we first let $\gamma = -(\alpha_1 \cos \theta + \alpha_2 \sin \theta + r')/(\alpha_3 - r\kappa \cos \theta)$, $\delta = \rho = 0$ and $S := \mathcal{H}(\alpha_3 - r\kappa \cos \theta)$. Then the coefficients of $\cos(3\theta)$ and $\sin(3\theta)$ of S are $r^2\kappa \left(r^2(\kappa^2 - \tau^2) + \alpha_1^2 - \alpha_2^2\right)/2$ and $r^2\kappa\alpha_1\alpha_2$ respectively. Since these should be equal to zero and $\kappa^2 \geq \tau^2$, we necessarily have $\alpha_1 = 0$.

Let $\delta = -(\alpha_2 \sin \theta + r')/(\alpha_4 + r\tau \sin \theta)$, $\gamma = \rho = 0$ and $\mathcal{T} := \mathcal{H}(\alpha_4 + r\tau \cos \theta)$. The coefficients of $\cos(2\theta)$ of \mathcal{S} and $\sin(2\theta)$ of \mathcal{T} are $r^3 \left(-5\alpha_3\kappa^2 + 2\alpha_3\tau^2 + \alpha_2\tau\eta\right)$ and $\left(3r^3\alpha_3\kappa\tau - r^3\alpha_2\kappa\eta\right)/2$ respectively, which are equal to 0. Hence we have either $\kappa^2 - \tau^2 = 0$ or $\alpha_3 = 0$. On the other hand, the coefficient of $\cos(3\theta)$ of \mathcal{T} is $-r^4\tau \left(\kappa^2 - \tau^2\right)$, which implies that $\kappa^2 = \tau^2$. Then we have $\alpha_2 = 0$, and since we assumed that $\tau^2 > 0$, we also have $\alpha_3 = 0$. Substituting these into \mathcal{S} , we have $\alpha_4 = 0$ from the coefficient of $\sin(2\theta)$.

Suppose that $\alpha_5 \neq 0$, and let $\gamma = \delta = 0$ and $\rho = -r'/\alpha_5$. Then \mathcal{H} becomes

$$r^{2}[r''-2r\kappa^{2}(\cos\theta)^{2}-2r\tau^{2}(\sin\theta)^{2}-\frac{r'}{\alpha_{5}}(\alpha_{5}'+r\kappa\nu\cos\theta-r\tau\nu\sin\theta)]$$
$$-r(\alpha_{5}^{2}+r'^{2}).$$

Therefore we have $\kappa = \tau = 0$, which contradicts the assumption $\kappa, \tau \neq 0$. From (5), (6) and $\alpha_5 = 0$, it follows that $\mu = \nu = 0$. This completes the proofs of i) and ii).

From the coefficients of $\sin \theta$ of S and $\cos \theta$ of T, we have

(7)
$$\beta \kappa = \tau \eta$$

and (8)

$$\beta \tau = \kappa \eta$$

Since $\mu = \nu = 0$ and $\alpha_i = 0$ for all i = 1, ..., 5, the surface $X(t, \theta)$ lies in a 4-dimensional Affine subspace.

Remark 1. When $n \ge 6$ and $X(t, \theta)$ is minimal, it is easy to see in the above proof that $\alpha_k = 0$ for $k \ge 5$ and $\gamma_i^{\lambda} = 0$ and $\beta_{\xi}^{\lambda} = 0$. Hence $X(t, \theta)$ should lie in a 4-dimensional Affine subspace.

Lemma 2. If the surface $X(t, \theta)$ defined by (2) is minimal with $\tau \equiv 0$, then the planes \tilde{P} lie in some 3-dimensional Affine subspace.

Proof. When $\tau \equiv 0$, we consider two cases; $\alpha_4 \equiv 0$ or $\alpha_4 \neq 0$. First of all, we have $\alpha_1 = 0$ as in the proof of the above lemma. If $\tau \equiv 0$ and $\alpha_4 \neq 0$, then we let $\gamma = \rho = 0$ and $\delta = -(\alpha_2 \sin \theta + r')/\alpha_4$. The coefficient of $\cos(2\theta)$ of \mathcal{H} is $-2r^3\kappa^3$. Since this must be 0, we have $\kappa \equiv 0$. Then η , ν and μ can be chosen to be zero, and \tilde{p} are parallel planes in a 3-dimensional Affine subspace.

If $\alpha_4 \equiv 0$, then \mathcal{H} is independent of the choice of δ . Hence we have $\eta \equiv 0$ and $\alpha_5 \mu \equiv 0$. If $\alpha_5 \equiv 0$, then we should have $\nu \equiv 0$. From (3), e_4 and e_5 are independent of e_1 , e_2 and e_3 , and \tilde{p} lie in a 3-dimensional Affine subspace. If $\alpha_5 \neq 0$, let $\gamma = \delta = 0$ and $\rho = -(\alpha_2 \sin \theta + r')/\alpha_5$. Then the coefficient of $\cos(2\theta)$ of $\alpha_5 \mathcal{H}$ is $-2r^3\kappa$, which should be 0. Therefore e_1 and e_2 are independent of e_3 , e_4 and e_5 , and \tilde{p} lie in a 3-dimensional Affine subspace. \Box

Lemma 3. The circle-foliated minimal surfaces in \mathbb{R}^4 of Lemma 1 is the graph G_c for some real c.

Proof. From (7), (8) and $\kappa^2 = \tau^2$, we see that $\beta^2 = \kappa^2 = \tau^2 = \eta^2$. Suppose that $\beta = \kappa$ and $\tau = \eta$ (the case $\beta = -\kappa$ and $\tau = -\eta$ can be dealt with in the same way). It follows that $(e_2 + e_3)' = 0$ and $(e_1 \pm e_4)' = 0$ (depending on the sign of κ/τ). We may suppose that $e_1 + e_4 = (0, 0, 0, \sqrt{2})$ and $e_2 + e_3 = (0, 0, \sqrt{2}, 0)$. Then we have

$$e_{1} = \frac{1}{\sqrt{2}} (\cos \psi(t), \sin \psi(t), 0, 1),$$

$$e_{2} = \frac{1}{\sqrt{2}} (\cos \phi(t), \sin \phi(t), 1, 0),$$

$$e_{3} = \frac{1}{\sqrt{2}} (-\cos \phi(t), -\sin \phi(t), 1, 0),$$

$$e_{4} = \frac{1}{\sqrt{2}} (-\cos \psi(t), -\sin \psi(t), 0, 1).$$

From $e'_1 = -\beta e_2 + \beta e_3$, we see that $2\beta = \pm \psi'$. If $\psi' = 2\beta$, then we have $\psi = \pi/2 + \phi$. Moreover $e'_3 = -\beta e_1 + \tau e_4$ implies that $\beta = \eta$. Similarly, when $\psi' = -2\beta$, we have $\kappa = \eta$. Therefore we may assume that $\beta = \kappa = \tau = \eta = 1$. Then direct computation shows that

$$\mathcal{H} = r\left(rr'' - 3r'^2 - 2r^2\right)$$

for the normals of $X(t,\theta)$ corresponding to the cases i) $\gamma = -r'/r\cos\theta$, $\delta = 0$ and ii) $\gamma = 0$, $\delta = r'/r\sin\theta$. Hence r satisfies

(9)
$$rr'' - 3r'^2 - 2r^2 = 0.$$

The solution of (9) is $r = C_1(\cos(2t+C_2))^{-1/2}$, where C_1 and C_2 are constants. We may let $C_1 = c$ and $C_2 = 0$ and $-\pi/4 < t < \pi/4$. Let A be the 4×4

orthogonal matrix given by

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & -1 & 1 & 0\\ 0 & 1 & 1 & 0\\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

Then $\tilde{X}(t,\theta) = A \circ X(t,\theta)$ represents the graph

$$G_c = \left\{ \left(\zeta, \frac{c}{\zeta}\right) \mid \zeta \in \mathbb{C} - \{0\} \right\}.$$

Remark 2. i) The parametrization of G_c is given by

$$\tilde{X}(t,\theta) = \left(r\cos\theta, r\sin\theta, \frac{c}{r}\cos\theta, -\frac{c}{r}\sin\theta\right).$$

Clearly, G_c has two ends that are asymptotic to the planes $\{(w, z) | w = 0\}$ and $\{(w, z) | z = 0\}$.

ii) Let $g_r = (r \cos \theta, r \sin \theta, \frac{c}{r} \cos \theta, -\frac{c}{r} \sin \theta)$ be the circle on G_c for fixed r. The geodesic curvature of g_r is

$$\kappa_g = \frac{r|c^2 - r^4|}{(c^2 + r^4)^{3/2}}.$$

Hence we have

$$\int_{g_r} \kappa_g \, ds = 2\pi \frac{|c^2 - r^4|}{c^2 + r^4}.$$

Since G_c is doubly-connected, Gauss-Bonnet theorem implies that

$$\int_{G_c} K \, dA = -\lim_{r \to 0} \int_{g_r} \kappa_g \, ds - \lim_{r \to \infty} \int_{g_r} \kappa_g \, ds = -4\pi.$$

3. Circle-foliated minimal surfaces in \mathbb{S}^4 and \mathbb{H}^4

To construct a circle-foliated minimal surface in \mathbb{S}^4 , we consider \mathbb{R}^4 with the conformal metric $ds_s^2 = ds_0^2/((1 + \langle x, x \rangle)/2)^2$, where ds_0^2 is the Euclidean metric of \mathbb{R}^4 and \langle, \rangle is the Euclidean inner product. Let H_s and H_0 be the mean curvatures of a surface M in \mathbb{R}^4 with respect to the metrics ds_s^2 and ds_0^2 respectively with respect to fixed Euclidean normal N satisfying (4). We have

$$H_s = \frac{1 + \langle x, x \rangle}{2|N|} H_0 + \left\langle x, \frac{N}{|N|} \right\rangle.$$

Similarly, to construct a circle-foliated minimal surfaces in \mathbb{H}^4 , we equip the conformal metric $ds_h^2 = ds_0^2/((1 - \langle x, x \rangle)/2)^2$ on the unit ball B(O, 1) of \mathbb{R}^4 . Then the mean curvature H_h of a surface M in B(O, 1) with respect to ds_h^2 satisfies

$$H_h = \frac{1 - \langle x, x \rangle}{2|N|} H_0 - \left\langle x, \frac{N}{|N|} \right\rangle$$

Examples of circle-foliated minimal surfaces in \mathbb{S}^4 and \mathbb{H}^4 . Let e_1, e_2 be defined as in the proof of Theorem 3:

(10)
$$e_{1} = \frac{1}{\sqrt{2}} (-\sin 2t, \cos 2t, 0, 1),$$
$$e_{2} = \frac{1}{\sqrt{2}} (\cos 2t, \sin 2t, 1, 0).$$

The mean curvature of the circle-foliated surface

(11)
$$X(t,\theta) = r(t)\left(\cos\theta e_1 + \sin\theta e_2\right)$$

satisfies

$$H_0 |N| = \frac{r \left(rr'' - 3r'^2 - 2r^2\right)}{2r^2 \left(r^2 + r'^2\right)}.$$

Hence as a surface in \mathbb{S}^4 , $X(t, \theta)$ has mean curvature

$$H_s |N| = \frac{1+r^2}{2} \cdot \frac{r\left(rr'' - 3r'^2 - 2r^2\right)}{2r^2\left(r^2 + r'^2\right)} + r$$

for all normal direction. Therefore the circles centered at the origin on the planes spanned by $e_1(t)$, $e_2(t)$ with radius function r(t) satisfying

(12)
$$\frac{1+r^2}{2} \cdot \frac{rr'' - 3r'^2 - 2r^2}{2r^2 \left(r^2 + r'^2\right)} + 1 = 0$$

define a circle-foliated minimal surface in \mathbb{S}^4 .

Lemma 4. Solution of (12) with the initial conditions

$$r(0) = a^2 > 0$$
 and $r'(0) = 0$

is periodic.

Proof. Note that if r(t) is a solution of (12), then r(-t) is also a solution of (12). Hence each solution r of (12) is an even function. Moreover if $r'(t_1) = 0$, then $r(t_1 + t) = r(t_1 - t)$. Therefore it suffices to show that $r'(t_1) = 0$ for some $t_1 > 0$.

Suppose that r' does not vanish except for t = 0, therefore, r'(t) > 0 for all t > 0. From (12), we have

(13)
$$r'' = \frac{(3-r^2) r'^2 + 2r^2 (1-r^2)}{r (1+r^2)}.$$

We may assume that a < 1. Then we have r''(0) > 0 and r'(t) > 0 for t close to 0. If r is not bounded, then $r'' \to -\infty$ as $t \to \infty$ by (13). Then $r' \to -\infty$, which contradicts r'(t) > 0 for all t > 0.

If r is bounded, then $r'' \to 0$ and $r' \to 0$ as $t \to \infty$. From (13) and the fact that $r'' \to 0$ as $t \to \infty$, it follows that $r \nearrow 1$ as $t \to \infty$. From (13), we have r''(t) > 0 for all t > 0. On the other hand, since r is bounded and increasing, we should have r''(t) < 0 for sufficiently large t. Hence we conclude that $r'(t_1) = 0$ for some t_1 and r is periodic.

To estimate the period of (13), we use the integrating factor to obtain a first integral

$$\frac{\left(1+r^2\right)^4}{r^6}\left(r'\right)^2 + \left(\frac{1}{r^4} + \frac{4}{r^2} + 4r^2 + r^4\right) = C,$$

or

(14)
$$\left(r+\frac{1}{r}\right)^4 \left(\frac{r'}{r}\right)^2 + \left(r+\frac{1}{r}\right)^4 = C.$$

We suppose that r'(0) = 0 and the minimum value r_{\min} is attained at t = 0, that is, $r_{\min} = r(0)$. Then

$$C = \left(r_{\min} + \frac{1}{r_{\min}}\right)^4.$$

Let r_{\max} be the maximum value of r and $r_{\max} = r(t_{\max})$ so that the period of r is $2 t_{\max}$. Then have

$$r_{\min} = \frac{1}{r_{\max}}.$$

Since r is strictly increasing on $(0, t_{\text{max}})$, we consider the inverse function t = t(r) of r(t). From (14), we have

$$t'^{2} = \frac{1}{r^{2}} \frac{\left(r^{2}+1\right)^{4}}{Cr^{4}-\left(r^{2}+1\right)^{4}}.$$

Then

$$t_{\max} = \int_{r_{\min}}^{r_{\max}} \frac{1}{r} \frac{\left(r^2 + 1\right)^2}{\sqrt{Cr^4 - \left(r^2 + 1\right)^4}} \, dr.$$

Since 1/r also satisfies (12), we have

$$t_{\max} = 2 \int_{r_{\min}}^{1} \frac{1}{r} \frac{\left(r^2 + 1\right)^2}{\sqrt{Cr^4 - \left(r^2 + 1\right)^4}} \, dr.$$

Substituting $R = r^2$, we get

(15)
$$t_{\max} = 2 \int_{r_{\min}^2}^1 \frac{1}{2R} \frac{(R+1)^2}{\sqrt{CR^2 - (R+1)^4}} \, dR$$

For convenience, we let $c^2 = C$ with $c \ge 4$, $p = \sqrt{(c+4)/c}$ and $k^2 = (c+4)/(c-4)$.

Substituting $R = (\rho - p)/(\rho + p)$, we have

$$\frac{dR}{\sqrt{c^2 R^2 - (R+1)^4}} = \frac{2p \, d\rho}{\sqrt{(c+4)(\rho^2 - 1)\left((c-4)\rho^2 - (c+4)\right)}}$$
$$= \frac{2}{\sqrt{c(c-4)}} \frac{d\rho}{\sqrt{(\rho^2 - 1)(\rho^2 - k^2)}}.$$

Then (15) becomes

$$t_{\max} = \frac{8}{\sqrt{c(c-4)}} \int_{\rho_0}^{\infty} \frac{\rho^2 \, d\rho}{(\rho^2 - p^2) \sqrt{(\rho^2 - 1)(\rho^2 - k^2)}},$$

where $\rho_0 = p(1 + r_{\min}^2)/(1 - r_{\min}^2) = k$.

Substituting $\tau = k/\rho$, we get

(16)
$$t_{\max} = \frac{8}{\sqrt{c(c+4)}} \int_0^1 \frac{d\tau}{\left(1 - \left(\frac{p}{k}\right)^2 \tau^2\right) \sqrt{(1-\tau^2)\left(1 - \frac{\tau^2}{k^2}\right)}}$$
$$= \frac{8}{\sqrt{c(c+4)}} \Pi\left(\frac{c-4}{c} \mid \frac{c-4}{c+4}\right),$$

where $\Pi((c-4)/c \mid (c-4)/(c+4))$ is the complete elliptic integral of the third kind. For the following lemma, we introduce the elliptic integral of the 1st kind $F(\phi, \alpha)$ and the elliptic integral of the 2nd kind $E(\phi, \alpha)$:

$$F(\phi, \alpha) = \int_0^{\phi} \frac{d\theta}{\sqrt{1 - \sin^2 \alpha \sin^2 \theta}},$$
$$E(\phi, \alpha) = \int_0^{\phi} \sqrt{1 - \sin^2 \alpha \sin^2 \theta} \, d\theta.$$

Moreover, $K(\alpha) = F(\pi/2, \alpha)$ and $E(\alpha) = E(\pi/2, \alpha)$ are the complete elliptic integrals of the first and second kinds respectively. Letting $k = \sin \alpha$, we also let $E(k) = E(\pi/2; k)$, $K(k) = F(\pi/2; k)$.

let $E(k) = E(\pi/2; k), K(k) = F(\pi/2; k).$ Note that $c^2 = (r_{\min} + 1/r_{\min})^2$. If $c \to 4$ or $r_{\min} \to 1$, then $t_{\max} \to \pi/\sqrt{2}$. In this case, we have $r \equiv 1$ and the resulting minimal surface is a torus.

Lemma 5. As a function of $c \ge 4$, t_{\max} is decreasing and satisfies

$$\lim_{c \to \infty} t_{\max} = \frac{\pi}{2}.$$

Hence the period of the solution of (12) is between π and $\sqrt{2\pi}$.

Proof. Straightforward computation shows that

$$\frac{d}{dc}\left(\frac{8}{\sqrt{c(c+4)}}\Pi\left(\frac{c-4}{c}\mid\frac{c-4}{c+4}\right)\right) = \frac{E\left(\frac{c-4}{c+4}\right) - K\left(\frac{c-4}{c+4}\right)}{2(c-4)\sqrt{c(c+4)}}.$$

Since

$$E\left(\frac{c-4}{c+4}\right) - K\left(\frac{c-4}{c+4}\right) < 0,$$

 t_{\max} is a decreasing function of c.

Let $\alpha = \sin^{-1} \sqrt{(c-4)/(c+4)}$ with $0 < \alpha < \pi/2$ and let $\nu = (c-4)/c$. According to [1], the integral $\Pi((c-4)/c; \pi/2, (c-4)/(c+4)) = \Pi(\nu; \pi/2, \alpha)$ belongs to the circular case with $\sin^2 \alpha < \nu < 1$, and

$$\Pi\left(\nu; \pi/2, \alpha\right) = K(\alpha) + \frac{\pi}{2} \delta_2\left(1 - \Lambda_0(\phi, \alpha)\right),$$

where Λ_0 is the Heuman's Lambda function satisfying

$$\Lambda_0(\phi,\alpha) = \frac{2}{\pi} \left[K(\alpha) \left(E(\phi,\pi/2-\alpha) - F(\phi,\pi/2-\alpha) \right) + E(\alpha)F(\phi,\pi/2-\alpha) \right]$$

and

$$\delta_2 = \sqrt{\nu/(1-\nu)(\nu-\sin^2\alpha)} = \sqrt{c(c+4)}/4,$$

$$\phi = \sin^{-1}\sqrt{(1-\nu)/\cos^2\alpha} = \sin^{-1}\sqrt{(c+4)/2c}.$$

Therefore $\phi \to \pi/4$ and $\alpha \to \pi/2$ as $c \to \infty$.

Clearly,

$$\lim_{c \to \infty} (E(\phi, \pi/2 - \alpha) - F(\phi, \pi/2 - \alpha)) = -\lim_{c \to \infty} \int_0^\phi \frac{\cos^2 \alpha \sin^2 \theta}{\sqrt{1 - \cos^2 \alpha \sin^2 \theta}} d\theta.$$

We note that $\cos \alpha = \sqrt{8/(c+4)}$ and that $\lim_{\alpha \nearrow \pi/2} \cos \alpha K(\alpha) = 0$ (cf. Lemma 8 of [5]). Then

$$\lim_{c \to \infty} t_{\max} = \lim_{c \to \infty} \frac{8}{\sqrt{c(c+4)}} \Pi\left(\nu; \pi/2, \alpha\right) = \frac{\pi}{2}.$$

Theorem 2. The circle-foliated surface given by (11) with e_1 , e_2 satisfying (10) and r satisfying (12) defines a one-parameter family of circle-foliated minimal surfaces in \mathbb{S}^4 . Moreover, the radius function r is periodic with the period between π and $\sqrt{2\pi}$. Hence there are infinitely many circle-foliated immersed minimal tori in \mathbb{S}^4 .

In \mathbb{H}^4 , we let e_1 , e_2 and $X(t,\theta)$ be as in (10) and (11). Then the mean curvature of $X(t,\theta)$ with respect to ds_h^2 satisfies

$$H_h |N| = \frac{1 - r^2}{2} \cdot \frac{r\left(rr'' - 3r'^2 - 2r^2\right)}{2r^2\left(r^2 + r'^2\right)} - r$$

with N satisfying (4). Hence if $X(t, \theta)$ is minimal, then r satisfies

(17)
$$\frac{1-r^2}{2} \cdot \frac{rr''-3r'^2-2r^2}{2r^2\left(r^2+r'^2\right)} - 1 = 0.$$

We note that r'' blows up as $r \to 1$, when $X(t, \theta)$ approaches the ideal boundary of \mathbb{H}^4 . For each initial condition $r(0) = b^2 < 1$, r'(0) = 0 of (17), $X(t, \theta)$ gives a complete circle-foliated minimal surface in \mathbb{H}^4 .

Theorem 3. The parametrization (11) with e_1 , e_2 satisfying (10) and r satisfying (17) gives a one-parameter family of circle-foliated minimal surfaces in \mathbb{H}^4 .

References

- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series 55, Government Printing Office, 1964.
- [2] A. Enneper, Die cyklischen flächen, Z. Math Phys. 14 (1869), 393-421.
- [3] H. Frank and O. Giering, Verallgemeinerte Regelflächen, Math. Z. 150 (1976), no. 3, 261–271.

CIRCLE-FOLIATED MINIMAL SURFACES IN 4-DIMENSIONAL SPACE FORMS 1443

- [4] D. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, 105 pp.
- [5] R. Hynd, S. Park, and J. McCuan, Symmetric surfaces of constant mean curvature in S³, Pacific J. Math. 241 (2009), no. 1, 63–115.
- [6] H. Lawson, Complete minimal surfaces in S³, Ann. Math. **92** (1970), no. 3, 335–374.
- [7] J. Nitsche, Lectures on Minimal Surfaces, Cambridge Univ. Press, Cambridge, 1989.

Major in Mathematics Graduate School of Education Hankuk University of Foreign Studies Seoul 130-791, Korea *E-mail address:* sunghopark@hufs.ac.kr