• Title/Summary/Keyword: H-likelihood

Search Result 156, Processing Time 0.03 seconds

Efficiency Evaluation of the Unconditional Maximum Likelihood Estimator for Near-Field DOA Estimation

  • Arceo-Olague, J.G.;Covarrubias-Rosales, D.H.;Luna-Rivera, J.M.
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.761-769
    • /
    • 2006
  • In this paper, we address the problem of closely spaced source localization using sensor array processing. In particular, the performance efficiency (measured in terms of the root mean square error) of the unconditional maximum likelihood (UML) algorithm for estimating the direction of arrival (DOA) of near-field sources is evaluated. Four parameters are considered in this evaluation: angular separation among sources, signal-to-noise ratio (SNR), number of snapshots, and number of sources (multiple sources). Simulations are conducted to illustrate the UML performance to compute the DOA of sources in the near-field. Finally, results are also presented that compare the performance of the UML DOA estimator with the existing multiple signal classification approach. The results show the capability of the UML estimator for estimating the DOA when the angular separation is taken into account as a critical parameter. These results are consistent in both low SNR and multiple-source scenarios.

  • PDF

Applications of the Type III Asymptotic Distribution for Extreme Sea Level Computations (극한 파고 계산에 있어서 Type III 분포의 응용)

  • T.I. Lee;S.H. Kwon;Y.K. Chon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 1992
  • The computational methods of extreme sea level are developed in this study. Based on type III asymptotic distribution, non-linear multiple regression method, skewness method and maximum likelihood method are used to evaluate the parameters of the distribution. The difference between real data and evaluated distribution function is fitted to get more desirable accuracy by employing polynominals. The numerical examples are given in the last section in order to illustrate the application of the present scheme.

  • PDF

Moments and Estimation From Progressively Censored Data of Half Logistic Distribution

  • Sultan, K.S.;Mahmoud, M.R.;Saleh, H.M.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.187-201
    • /
    • 2006
  • In this paper, we derive recurrence relations for the single and product moments of progressively Type-II right censored order statistics from half logistic distribution. Next, we derive the maximum likelihood estimators (MLEs) of the location and scale parameters of the half logistic distribution. In addition, we use the setup proposed by Balakrishnan and Aggarwala (2000) to compute the approximate best linear unbiased estimates (ABLUEs) of the location and scale parameters. Finally, we point out a simulation study to compare between the efficiency of the techniques considered for the estimation.

  • PDF

Method for classification and delimitation of forest cover using IKONOS imagery

  • Lee, W.K.;Chong, J.S.;Cho, H.K.;Kim, S.W.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.198-200
    • /
    • 2003
  • This study proved if the high resolution satellite imagery of IKONOS is suitable for preparing digital forest cover map. Three methods, the pixel based classification with maximum likelihood (PML), the segment based classification with majority principle(SMP), and the segment based classification with maximum likelihood(SML), were applied to classify and delimitate forest cover of IKONOS imagery taken in May 2000 in a forested area in the central Korea. The segment-based classification was more suitable for classifying and deliminating forest cover in Korea using IKONOS imagery. The digital forest cover map in which each class is delimitated in the form of a polygon can be prepared on the basis of the segment-based classification.

  • PDF

The skew-t censored regression model: parameter estimation via an EM-type algorithm

  • Lachos, Victor H.;Bazan, Jorge L.;Castro, Luis M.;Park, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.333-351
    • /
    • 2022
  • The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.

Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data (frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료)

  • Kim, Bohyeon;Ha, Il Do;Noh, Maengseok;Na, Myung Hwan;Song, Ho-Chun;Kim, Jahae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.965-976
    • /
    • 2015
  • Determining relevant variables for a regression model is important in regression analysis. Recently, a variable selection methods using a penalized likelihood with various penalty functions (e.g. LASSO and SCAD) have been widely studied in simple statistical models such as linear models and generalized linear models. The advantage of these methods is that they select important variables and estimate regression coefficients, simultaneously; therefore, they delete insignificant variables by estimating their coefficients as zero. We study how to select proper variables based on penalized hierarchical likelihood (HL) in semi-parametric frailty models that allow three penalty functions, LASSO, SCAD and HL. For the variable selection we develop a new function in the "frailtyHL" R package. Our methods are illustrated with breast cancer survival data from the Medical Center at Chonnam National University in Korea. We compare the results from three variable-selection methods and discuss advantages and disadvantages.

A new Korean red algal species, Haraldiophyllum udoensis sp. nov. (Delesseriaceae, Rhodophyta)

  • Kim, Myung-Sook;Kang, Jeong-Chan
    • ALGAE
    • /
    • v.26 no.3
    • /
    • pp.211-219
    • /
    • 2011
  • The genus Haraldiophyllum comprises seven species worldwide. Six of these are endemics with limited distributions, whereas the type species H. bonnemaisonii has been reported from the Atlantic Ocean. In Korea, H. bonnemaisonii has been previously recorded from the southern coast. During a red algal collection at Udo, Jeju Island, Korea, we found a potentially undescribed Haraldiophyllum species and analyzed its morphology and rbcL sequences. Herein we describe a new species, H. udoensis sp. nov., and compare our Udo specimen to similar congeners. This new species is characterized by one or several elliptical blades on a short cylindrical stipe with fibrous roots, blades that are monostromatic except at the base and on reproductive structures, a lack of network and microscopic veins, entire margins, lack of proliferations, growth through many marginal initials, and two distinct tetrasporangia layers. A phylogenetic rbcL sequence analysis demonstrated H. udoensis was distinct from the United Kingdom's H. bonnemaisonii, as well as from other species. Morphological and sequence data indicated a previous misidentification of H. udoensis as the type species H. bonnemaisonii. Based on maximum likelihood analysis, Myriogramme formed a sister clade with H. udoensis, with relatively low bootstrap support.

Complex Segregation Analysis of Categorical Traits in Farm Animals: Comparison of Linear and Threshold Models

  • Kadarmideen, Haja N.;Ilahi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1088-1097
    • /
    • 2005
  • Main objectives of this study were to investigate accuracy, bias and power of linear and threshold model segregation analysis methods for detection of major genes in categorical traits in farm animals. Maximum Likelihood Linear Model (MLLM), Bayesian Linear Model (BALM) and Bayesian Threshold Model (BATM) were applied to simulated data on normal, categorical and binary scales as well as to disease data in pigs. Simulated data on the underlying normally distributed liability (NDL) were used to create categorical and binary data. MLLM method was applied to data on all scales (Normal, categorical and binary) and BATM method was developed and applied only to binary data. The MLLM analyses underestimated parameters for binary as well as categorical traits compared to normal traits; with the bias being very severe for binary traits. The accuracy of major gene and polygene parameter estimates was also very low for binary data compared with those for categorical data; the later gave results similar to normal data. When disease incidence (on binary scale) is close to 50%, segregation analysis has more accuracy and lesser bias, compared to diseases with rare incidences. NDL data were always better than categorical data. Under the MLLM method, the test statistics for categorical and binary data were consistently unusually very high (while the opposite is expected due to loss of information in categorical data), indicating high false discovery rates of major genes if linear models are applied to categorical traits. With Bayesian segregation analysis, 95% highest probability density regions of major gene variances were checked if they included the value of zero (boundary parameter); by nature of this difference between likelihood and Bayesian approaches, the Bayesian methods are likely to be more reliable for categorical data. The BATM segregation analysis of binary data also showed a significant advantage over MLLM in terms of higher accuracy. Based on the results, threshold models are recommended when the trait distributions are discontinuous. Further, segregation analysis could be used in an initial scan of the data for evidence of major genes before embarking on molecular genome mapping.

Mathematical Analysis Power Spectrum of M-ary MSK and Detection with Optimum Maximum Likelihood

  • Niu, Zheng;Jiang, Yuzhong;Jia, Shuyang;Huang, Zhi;Zou, Wenliang;Liu, Gang;Li, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2900-2922
    • /
    • 2021
  • In this paper, the power spectral density(PSD) for Multilevel Minimum Shift Keyed signal with modulation index h = 1/2 (M-ary MSK) are derived using the mathematical method of the Markov Chain model. At first, according to an essential requirement of the phase continuity characteristics of MSK signals, a complete model of the whole process of signal generation is built. Then, the derivations for autocorrelation functions are carried out precisely. After that, we verified the correctness and accuracy of the theoretical derivation by comparing the derived results with numerical simulations using MATLAB. We also divided the spectrum into four components according to the derivation. By analyzing these figures in the graphic, each component determines the characteristics of the spectrum. It is vital for enhanced spectral characteristics. To more visually represent the energy concentration of the main flap and the roll-down speed of the side flap, the specific out-of-band power of M-ary MSK is given. OMLCD(Optimum Maximum Likelihood Coherent Detection) of M-ary MSK is adopted to compare the signal received with prepared in advance in a code element T to go for the best. And M-ary MSK BER(Bit Error Rate) is compared with the same ary PSK (Phase Shift Keying) with M=2,4,6,8. The results show the detection method could improve performance by increasing the length of L(memory inherent) in the phase continuity.

Assessment of Occupational Health Risks for Maintenance Work in Fabrication Facilities: Brief Review and Recommendations

  • Dong-Uk Park;Kyung Ehi Zoh;Eun Kyo Jeong;Dong-Hee Koh;Kyong-Hui Lee;Naroo Lee;Kwonchul Ha
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.87-95
    • /
    • 2024
  • Background: This study focuses on assessing occupational risk for the health hazards encountered during maintenance works (MW) in semiconductor fabrication (FAB) facilities. Objectives: The objectives of this study include: 1) identifying the primary health hazards during MW in semiconductor FAB facilities; 2) reviewing the methods used in evaluating the likelihood and severity of health hazards through occupational health risk assessment (OHRA); and 3) suggesting variables for the categorization of likelihood of exposures to health hazards and the severity of health effects associated with MW in FAB facilities. Methods: A literature review was undertaken on OHRA methodology and health hazards resulting from MW in FAB facilities. Based on this review, approaches for categorizing the exposure to health hazards and the severity of health effects related to MW were recommended. Results: Maintenance workers in FAB facilities face exposure to hazards such as debris, machinery entanglement, and airborne particles laden with various chemical components. The level of engineering and administrative control measures is suggested to assess the likelihood of simultaneous chemical and dust exposure. Qualitative key factors for mixed exposure estimation during MW include the presence of safe operational protocols, the use of air-jet machines, the presence and effectiveness of local exhaust ventilation system, chamber post-purge and cooling, and proper respirator use. Using the risk (R) and hazard (H) codes of the Globally Harmonized System alongside carcinogenic, mutagenic, or reprotoxic classifications aid in categorizing health effect severity for OHRA. Conclusion: Further research is needed to apply our proposed variables in OHRA for MW in FAB facilities and subsequently validate the findings.