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In this paper, we address the problem of closely spaced 
source localization using sensor array processing. In 
particular, the performance efficiency (measured in terms 
of the root mean square error) of the unconditional 
maximum likelihood (UML) algorithm for estimating the 
direction of arrival (DOA) of near-field sources is 
evaluated. Four parameters are considered in this 
evaluation: angular separation among sources, signal-to-
noise ratio (SNR), number of snapshots, and number of 
sources (multiple sources). Simulations are conducted to 
illustrate the UML performance to compute the DOA of 
sources in the near-field. Finally, results are also presented 
that compare the performance of the UML DOA 
estimator with the existing multiple signal classification 
approach. The results show the capability of the UML 
estimator for estimating the DOA when the angular 
separation is taken into account as a critical parameter. 
These results are consistent in both low SNR and multiple-
source scenarios. 
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I. Introduction 

In recent years, source localization using array signal 
processing has captured the attention of the research 
community because of its important applications in radar, sonar, 
wireless systems, seismology, and so on. A basic source 
localization problem is that of direction of arrival (DOA) 
estimation for narrowband signals. A wide variety of 
techniques has already been proposed for the DOA estimation 
of narrowband sources using an array of sensors [1]. Most of 
these techniques, however, assume that sources locate 
relatively far from the array, and thus the wavefronts from the 
sources can be regarded as plane waves. As the sources 
approach the array, this assumption is no longer valid. When a 
source is located close to an array of sensors (near-field), the 
wavefront of the received signal is curved, and the curvature 
depends on the distance. Therefore, both the angle and range 
become parameters of interest.  

Early work in DOA estimation includes the early version of 
the maximum-likelihood (ML) solution [1], but it did not 
become popular due to its high computational cost [2], [3]. A 
variety of suboptimal techniques with reduced computations 
include the minimum variance method of Capon [4], the 
multiple signal classification (MUSIC) method [5], [6], and 
high-order subspace-based methods [7], among others. The 
MUSIC method and Capon's method present, for example, the 
capability to resolve sources given a moderate signal-to-noise 
ratio (SNR) value and a sufficient number of data snapshots. 
These subspace methods provide the advantage of low 
computational complexity. Although the ML estimator requires a 
high computational effort due to its likelihood maximization 
function, it also presents a number of attractive properties which 
are suitable to the near-field source localization problem. Some 
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of these properties are, for instance, consistency, asymptotic 
unbiasedness, and asymptotic minimum variance [8], [9]. A 
further important property of ML-based techniques is that they 
provide resolvability of closely-spaced sources in the presence of 
high levels of noise. To reduce the complexity of the ML 
estimator, several suboptimal methods have been proposed such 
as the genetic algorithms in [11], the alternating projection 
scheme [10], the expectation/maximization (EM) iterative 
method [12], and the conditional ML [13]. An estimator of 
particular interest is the conditional ML which considers 
unknown but deterministic signals. However, if a random type of 
signal is considered, it is required to incorporate the statistics of 
this signal. Such statistics are considered by the unconditional 
maximum likelihood (UML) estimator [8] which we will focus 
on this paper. In [8], the problem of calculating maximum 
likelihood estimates through a close-form solution is overcome 
by employing the iterative EM algorithm. 

The authors of [6] have shown that DOA estimation efficiency 
can be improved when angular separation between two sources 
is introduced. However, a compromise between SNR values and 
the number of data snapshots must be accomplished in order to 
improve the resolution in the DOA estimation. It has also been 
shown that the performance of DOA estimation algorithms may 
be significantly affected by variations in these parameters. In this 
paper, we evaluate the performance efficiency of the UML 
method for estimating the DOA of narrowband sources in the 
near-field using a uniform array of sensors. The performance, in 
terms of the root mean square, of the UML estimator is evaluated 
as a function of angular separation, SNR and snapshots between 
signal sources. Furthermore, the performance of the UML 
estimator is also considered for the multiple sources environment. 
The experimental analysis on simulated data demonstrates that 
the UML estimator offers increased resolution, robustness to 
noise, and improvements in data quantity, as compared to 
methods such as MUSIC. The MUSIC algorithm is perhaps one 
of the most popular suboptimal techniques. Therefore, we 
establish a comparison with this algorithm under the same 
circumstances.  

The paper is organized as follows. Section II defines the 
notations used in this paper. Section III introduces the signal 
model of interest. Section IV summarizes the key points in the 
derivation of the UML as well as the main steps of the iterative 
EM algorithm. In section V, a series of computer simulations are 
presented to demonstrate the improved performance of the UML 
estimator. Finally, we draw some conclusions in section VI. 

II. Nomenclature   

• (.)T : matrix transpose. 
• (.)H: matrix conjugate transpose. 

• μ=[μ1,…, μd] ∈ ℜd×1: far-field vector. 
• ζ=[ζ1,…,ζd] ∈ ℜd×1: near-field vector. 
• s∈ℑ d×1: signal vector. 
• x(tn)=[xkmin,…,xkmax] ∈ ℑM×1: outgoing vector of the array at 

time tn. 
• A{μ, ζ}=[a(μ1, ζ1),…, a(μd, ζd)] ∈ ℑM×d: array steering 

matrix.  
• X=[xT(1),…,xT(N)]T ∈ ℑM×N: outgoing matrix for N 

samples. 
 

 

Fig. 1. Narrowband sources in the near-field impinging on a 
uniform array of sensors. 
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III. Signal Modelling 

Consider the narrowband model for near-field sources 
impinging upon a linear array of M omnidirectional sensors 
(k∈K={kmin,…, kmax}) as shown in Fig. 1. Due to non-uniform 
spatial loss in the near-field geometry, the signal strength at 
each sensor can be different. Therefore, every element has a 
gain which in this case is normalised to 1. 

The sensor array elements are assumed to be uniformly 
separated by a distance Δ= λ/4, where λ denotes the 
wavelength. The variable β defines the separation between two 
sources. Let si(tn), and θi =[θ1,…,θi], i=1, 2,…,d, be the 
complex envelope and a sampling grid of all directions of 
arrival for d sources respectively; then the observation model 
at the output of the k-th array element for the tn sample can be 
expressed as  

Nttnetstx nnk
kkj

d

i
nink

ii ≤≤+= +

=
∑ 1),()()( )(

1
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where the first component of the phase, (μik) with μi=       
-(2πΔ/λ)sinθi , corresponds to the phase contribution in the far-
field, and the second term, ζi=-(2πΔ2/λri)cos2θi, is a second-
order polynomial which is used to approximate the spherical 
wavefront effect of the source in the near-field [8]. The non-
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linear function ζi incorporates the distance effect between each 
source and the k-th sensor array ri, and the azimuth θi into the 
observation model. Taking a sample from each sensor, we can 
use (1) to express in a matrix form the observed signal for the 
sensor array. Thus the M×1 array output signal, 
x(tn)=[xkmin(tn) ,…, xk(tn) ,…, xkmax(tn)]T, can be expressed as 

Nt1),(t)(tξ),(μ)(t nnnn ≤≤+= nsAx         (2) 

where the d×1 vector s(tn)=[s1(tn),…, sd(tn)]T groups the source 
signal and the M×1 vector n(tn)=[nkmin(tn),…,nk(tn),…, 
nkmax(tn)]T, the noise samples corresponding to the M output 
sensor signals. The matrix A(μ, ζ) denotes the steering matrix 
of dimensions M×d where the i-th column is defined by  

.

1

),(

)(

)42(

)(

)(

2
maxmax

2
minmin

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

+

ii

ii

ii

ii

kkj

j

j

kkj

ii

e

e

e

e

ζμ

ζμ

ζμ

ζμ

ζμa              (3) 

Considering variations in the SNR values, and given a small 
angle separation β among sources, this paper is mainly 
concerned with determining the UML estimator efficiency for 
DOA estimation of sources in the near-field. In this paper, 
efficiency will be evaluated in terms of the root mean square 
error (RMSE). In the next section, we review the main points 
in the derivation of the UML estimator. 

IV. UML Estimator  

In this section, we summarise the derivation of the UML 
estimator for the near-field source localization problem stated 
in this paper. The UML estimator was originally addressed in 
[8]. In order to derive the UML estimator, the following 
assumptions are made on the signal modelling process. First, it 
is assumed that the source signal, s(tn), and the noise, n(tn), are 
temporally and spatially uncorrelated zero-mean complex 
Gaussian random processes. Therefore, it can be shown that 
the covariance matrix for the observed data vector X can be 
defined as  
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where Ks is the unknown covariance matrix of the uncorrelated 

source signals, that is, Ks =diag[α1,…,αi,…,αd] (with αi as its 
coefficients), and σ2 is the noise variance which is assumed to 
be known. Thus the joint probability density function of the 
observation vector X, given {μ, ζ , Ks}, can be described by   
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In order to yield the measure of uncertainty, the negative log-
likelihood function is considered. Using (5), and after some 
simplifications, the resulted objective function is given by 
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Furthermore, given the fact that x(tn) is second-order ergodic 
[8], we find that 

),()(1limˆlim
1

xx n

N

t

H
nNN

tt
N

n

∑
=

∞→∞→
== xxKK         (7) 

where xK̂ is the sampling covariance matrix. Therefore, the 
negative log-likelihood function can now be represented as 

].[)det(ln),,;( 1
xxxs KKKKζμ −−−= trxL      (8) 

Minimizing the negative of a log-likelihood function thus 
produces maximum likelihood estimates. However, the 
minimization problem of the objective function in (8) turns out 
to be a problem where finding a unique solution through a 
closed-form formula is not possible [8], [12]; therefore, an 
alternative solution to this optimization problem is the 
application of a numerical solution. To solve this minimization 
problem, the computationally efficient iterative solution called 
the EM algorithm has been proposed by Cekli and Cirpan in 
[8]. This algorithm decomposes the observed data into its 
signal components and then yields an estimate of each source 
component separately. A brief review of the EM algorithm is 
presented next. 

EM Algorithm 

In order to apply the EM algorithm, it is necessary to define a 
complete set of data associated with the negative log-likelihood 
objective function given in (8). The EM algorithm 
approximates the ML estimate in an iterative fashion. However, 
this iterative process can be simplified by choosing an 
appropriate log-likelihood function of the complete data so that 
this function can be easily estimated and maximized from the 
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incomplete data. Therefore, a particular choice for the complete 
data can be given by 

dlttst nlnlllnl ≤≤+= 1),()(),()( nay ζμ      (9) 

where nl(tn) is the Gaussian noise vector corresponding to the l-th 
signal, that is  

dltt
d
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For the set of N samples and d sources, it is necessary to 
establish the relation between the set of complete data and 
the incomplete data. In this case, this relationship is given 
by 
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In (11), the complete data yl(tn) is observed as a Gaussian 
process with mean zero and covariance Ky. Then the log-
likelihood function of yl(tn) is evaluated as 
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In this way, the EM algorithm optimises the log-likelihood 
function of the complete data. The expectation in the EM 
algorithm involves the conditional expectation of the log-
likelihood of the complete data with respect to the previous 
estimates of {μ p, ζ p, Ks}. On the other hand, the maximization 
process yields an estimate of the parameters {μ p

, ζ p, Ks}. This 
is achieved by maximizing the log-likelihood function of the 
complete data. This optimization process is then repeated for 
each source. An outline of the EM algorithm can be 
summarized through 3 steps. 

Step 1. Initialization 

For the first source, set the initial phase and coefficient values 
{μ1

0
, ζ1

0, α1
0} for p=0.  

Step 2. Expectation 

Subsequently, for p=p+1 calculate with the following: 
1) From the near-field estimated parameters {μ p+
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Step 3. Maximization 

Maximize the likelihood function from the complete data 
with respect to the estimated parameters for αl > 0. To estimate 
the parameters {μ p+1

, ζ p+1}, substitute 1
yK̂ +p

l
 in (15). 
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For {μ p+1
, ζ p+1}, calculate the coefficient 1+p

lα for Ks as 
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The steps 2 and 3 are repeated until {μl , ζl } and αl  converge.  
Cramer-Rao bounds (CRBs) [8] on the asymptotic 

performance of near-field source location estimators are valid 
for providing a lower bound on the error variance of any 
unbiased estimator. In this paper, we make use of the CRBs as 
a benchmark for analyzing and comparing the performance 
efficiency of the UML estimator. As in the Appendix, these 
asymptotical bounds are defined as 
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1

xs2
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where [ ] ,
1 HHC AAAAIΠ

−
−=  and 1 is a matrix of ones. 

The operators • and ⊗ denote the inner and Kronecker 
products, respectively. For a complete derivation on these 
bounds, refer to [8]. 

V. Simulation Results 

To evaluate the performance efficiency of the UML 
estimator, we obtain and compare the asymptotical and 
estimated DOA RMSE for closely-spaced near-field sources. 
Simulation results are mainly presented in terms of the angle 
separation among the sources, a variable mostly neglected in 
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the research community when estimating the DOA of near-
field sources. These simulations are intended to show the 
performance efficiency of the UML estimator in undesirable 
conditions, that is, by increasing the number of sources and low 
SNR given an angular separation β. 

A uniform linear array of M=7 sensors separated by a quarter 
wavelength (d=λ/4) of the actual narrowband source signals is 
considered. It implies that the antenna array with its half power 
beamwidth can resolve two sources when they are separated by 
an angle β > 14.5. In this section, we report three different 
experiments which were carried out to show the UML DOA 
estimator performance. It was assumed that all sources transmit 
with the same power for all the scenarios considered here. The 
first two experiments were set up to obtain the DOA RMSE 
estimations given an angular separation β. These simulations 
were computed for different SNR values and number of input 
data snapshots. In the third experiment, the UML DOA 
estimation performance as a function of SNR was obtained for 
the scenario of multiple sources. In addition, we applied the 
MUSIC algorithm and computed the CRB using (17) for 
comparison purposes. 

1. DOA Estimation with Angular Source Separation and 
SNR Variations 

We first consider two narrowband sources in the near-field 
impinging upon the sensor array. These sources were placed in 
{θ1, r1}={10°, 10λ} and {θ2, r2}={θ1 + β, 11.8λ}, respectively, 
where r1 and r2 specify the distances between the sensor array 
and each of the sources.  

Figures 2 and 3 show the relation between the average DOA 
RMSE estimates and the angular separation β when using the 
MUSIC and the UML estimators. The number of snapshots was 
set to 1000 and the SNR varied from 0 dB to 11 dB. A total of 
200 independent trials were performed for each simulation. 

Figure 2 shows the results obtained using the MUSIC 
algorithm. It can be observed that the RMSE of the estimated 
DOA presents a significant performance variation as the 
angular separation β is increased. For example, the RMSE 
shows a two-order variation for an SNR of 11 dB, this goes 
from the range of 25° in β=5° to 0.25° with β=12°. If the SNR 
is reduced, the variation of the RMSE estimation lessens as 
well, but this comes at the cost of large values in the RMSE. A 
further analysis of the plots in Fig. 2 illustrates that if we set up 
a maximum RMSE value, for instance, to one degree, this 
performance would be reached only when β≥8 degrees and the 
SNR is between 9 and 11 dB. These results are useful to 
illustrate that the MUSIC algorithm degrades significantly 
when the angular separation β and the SNR are varying. 
Following a similar analysis of the UML estimator 

 

Fig. 2. RMSE of MUSIC estimations for two sources with 
different separation. Estimation with 1000 samples. 
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Fig. 3. RMSE of UML estimations for sources with different 
separations. Estimations with 1000 samples. 
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performance, which is shown in Fig. 3, it can be seen that only 
small variations are obtained when varying the angular 
separation and the SNR. Looking at the plot corresponding to 
the case of an SNR=0 dB, we observe that the RMSE of the 
DOA estimates varies from 0.41 to 0.29° corresponding to the 
cases of β=5° and β=12°, respectively. It is also clear that the 
UML estimator for higher values of SNR up to 11 dB achieves 
a similar performance. Notice that due to the small variations 
of the RMSE values in Fig. 3, we have displayed the vertical 
axis in a linear scale. One aspect of the UML technique is that 
it is able to yield estimates with small RMSE values. Figure 3 
shows RMSE values within an interval of 0.5 degree. Other 
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source localization methods have much difficulty resolving 
closely-spaced sources, especially at low SNR levels; therefore, 
small RMSE values can be considered a good performance 
compromise. As compared with the MUSIC algorithm, the 
UML estimator has improved the performance for low SNR by 
exhibiting very small variations when the angular separation 
changes. 

2. DOA Estimation with Angular Source Separation and 
SNR Variations for a Reduced Number of Input Samples 

A second set of simulations were carried out with the 
purpose of evaluating the influence of the number of snapshots 
while determining the efficiency of the UML estimator for 
locating a source in the near-field. For these simulations, it was 
also considered the case of a two-source scenario but only 500 
samples were processed, half the number of samples used in 
the previous experiment. 

In Fig. 4, we plotted the RMSE of the DOA estimation using 
MUSIC as a function of the angular separation between the 
two sources when the SNR varies from 0 dB to 11 dB. We note 
that MUSIC is not able to satisfy the consideration of one 
degree as the maximum DOA RMSE allowed for all values of 
SNR and β considered in these simulations. 

We next show the simulation results using the UML 
estimator. These results are plotted in Fig. 5. From these results, 
it is clear to observe that under the two-source scenario, the 
UML estimator can estimate the sources position within a 
maximum RMSE of one degree. 

As before, the vertical axis in Fig. 5 is set to a linear scale in 
order to present the results in a clearer fashion. Analyzing Fig. 
5, we observe that, for the SNR=0 dB case, the UML estimator 
 

 

Fig. 4. RMSE of MUSIC estimations for two sources with
different separation. Estimation with 500 samples. 
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Fig. 5. RMSE of UML estimations for two sources with different 
separation. Estimation with 500 samples. 
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manages to estimate the sources’ DOA with an RMSE value of 
0.45 degrees for all the angular positions considered. Analyzing 
Fig. 5, we observe that, for the SNR=0 dB case, the UML 
estimator manages to estimate the sources’ DOA with an 
RMSE value of 0.45 degrees for all the angular positions 
considered. It is then evident that the performance efficiency of 
the UML estimator becomes more robust than MUSIC to the 
effect of reducing the number of input samples when a small 
angular separation β between sources is considered. 

3. DOA Estimation for a Multiple Source Scenario and 
SNR Variations 

Finally, we present the performance evaluation for the UML 
and MUSIC estimators under the multiple source scenario. In 
this framework, we consider the existence of 5 sources where 
the i-th source was placed at the location {θi , ri}, with θi  ∈ 
{10°, 15°, 20°, 25°, 30°} and ri ∈ {10λ, 11.8λ, 10.3λ, 11.4λ, 
9.8λ}, for i=1, 2,…,5. The total number of snapshots was 1000 
and the SNR was 11 dB. Figure 6 shows the performance of 
the MUSIC algorithm to resolve the 5 closely-spaced sources 
with a constant angular separation of 5°. In this case, the 
MUSIC algorithm managed to resolve only three of the 
sources, failing to estimate the location of the other two. 

The estimated sources were at the following locations 
[38.80°, 5.26°, -42.14°]. From these results we can observe that 
two of these estimates have an RMSE value lower than 10º 
while the third estimated source has a far worse estimation 
accuracy of DOA than the previous two (RMSE higher than 
50°). As can be observed in Fig. 6, the DOA accuracy loss is 
large for the MUSIC algorithm under this multiple source 
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Fig. 6. MUSIC spectrum during the estimation of multiple
sources, angular separation 5°. Estimation with 1000
samples. 
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Fig. 7. RMS error of UML during the estimation of multiple
sources, angular separation 5°. Estimation with 1000
samples.  

 
scenario. On the other hand, Fig. 7 depicts the performance of 
the UML estimator for the same scenario. The cases taking the 
first two sources or the first 3 sources are also included in these 
simulations. In contrast, the UML estimator shows more 
satisfactory DOA estimations than MUSIC resulting in the 
localization of all sources. Recall that the maximum value of 
RMSE error allowed is one degree. Therefore, the UML 
estimator can achieve a good accuracy of the source DOA. 
Changing the number of sources from two to five, the DOA 
RMSE values computed range from 0.4° to 0.8°; however, the 
maximum RMSE value allowed is never reached. For each 
case of DOA estimation, Fig. 7 shows the Cramer-Rao bounds, 
which are used as a benchmark to compare the results obtained 

by the UML estimator. We can observe that the UML 
performance can approach the Cramer-Rao bounds as the SNR 
is increased, although a small error is perceived when we 
increase the number of sources.  

VI. Conclusions 

In this paper we have reported the performance behaviour of 
the UML estimator under different conditions: 1) low SNR 
values, 2) angular separation among sources, 3) varying the 
number of input samples and 4) increasing the number of 
sources (multiple sources). The experimental results on 
simulated data demonstrate that the UML estimator exhibits a 
smaller loss in DOA estimation performance as compared to the 
MUSIC algorithm under all the conditions considered in this 
paper. Extensive computer simulations have shown the DOA 
RMSE performance for the UML estimator under different 
scenarios. Considering the case of multiple sources, we found 
that the minimum angular separation among sources was 5º for a 
SNR of 0 dB. We can conclude that by increasing the number of 
sources, the UML estimator can still yield good estimates of the 
DOA sources, making this algorithm a technique which is robust 
to this environment. Finally, it can be stated that the angular 
separation β is a critical parameter for the DOA algorithms, even 
for the UML estimator. This is evident in comparing the small 
RMSE variations when the SNR and/or number of input 
samples changes. 

Appendix. Cramer-Rao Bounds 

The parameter of interest is .],[ TTT ζμτ =  To focus on the 
parameters of interest requires the concentrated likelihood 
approach to obtain the CRB [14]. Then the Fisher information 
matrix (FIM) is given to the (i, j)-th element by 
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The []∞ is defined as the almost sure limit of [⋅], and xK~ is 
the concentrated covariance after substituting the ML estimates 

xK̂ for Kx when the limit N → ∞. 
Suppressing the dependence of A on ),( ζμ  for notational 

convenience, the concentrated covariance xK̂ with respect to  
ss KK ˆˆ → yields 

,ˆˆ~ 22 cH ΠΠKΠIAKAK xsx σσ +=+=       (A2) 

where 

HH AAAAΠ 1][ −Δ=  and .ΠIΠ −=Δc         (A3) 
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Letting iτΠ ∂∂ / be denoted by ,iΠ  for any i=1,…,2d and 
taking the limit N → ∞ , thus from (A2), the following are 
immediate: 
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and applying (A1) give 
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Next, we note that 

Πi = ΠcAiA†+ (AH)†Ai
H Πc 

where (.)†is the pseudo inverse (Moore-Penrose inverse). 
Evaluating (A5) and then reducing terms gives 
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From these results and after reduction, the FIM elements are 

{ }.)()(Re2)( 1
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Finally, the CRB-1(τ) matrix derived is as follows: 

{ },)(Re2)( 1
2

1 THcHNCRB sxs AKKAK1AΠAτ −− ⊗•=
σ

(A7) 

where 1 is defined as a matrix of ones. 
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