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Abstract
The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the nor-

mal, skew-normal and Student’s-t distributions as special cases. In this work, we propose an EM-type algorithm
for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In
contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte
Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distri-
bution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved
values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is
illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian
students.

Keywords: censored regression, EM-type algorithm, kurtosis, truncated moments, skewness,
skew-t distribution

1. Introduction

Estimation of the censored regression (CR) model, or the Tobit model, has become quite common in
the literature. However, as the Tobit model is based on normally distributed errors (N-CR), the max-
imum likelihood (ML) estimator is inconsistent if the underlying errors are not normally distributed.
This inconsistency in the Tobit model led to the development of less sensitive estimators to the as-
sumption of normality. Several authors have studied CR models involving response variables with
heavier tails than the normal distribution in recent years. For instance, Arellano-Valle et al. (2012)
and Massuia et al. (2015) have studied CR models based on the Student’s-t distribution (T-CR). They
demonstrated the robustness aspects of the T-CR model against outliers through extensive simulations
by using the Expectation-Maximization (EM) algorithm, which is based on the first two moments
of the truncated Student’s-t distribution. However, the T-CR model is not appropriate when the data
simultaneously present skewness and heavy tails.

Recently, Massuia et al. (2017) have established a new link between the CR model and asymmetri-
cal heavy tails distributions by using the class of scale mixtures of skew-normal (SMSN) distributions
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(SMSN-CR), which allows capturing, simultaneously, skewness and kurtosis and contains, as spe-
cial cases, the normal (N), Student’s-t (T), skew-t (ST) and skew-normal (SN) distributions. Under
the Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) is introduced to carry out
posterior inference. The method is implemented in the R package BayesCR (Garay et al., 2017b). It
is important to stress that the Massuia et al. (2017b)’s approach does not need the computation of
the truncated moments of the SMSN family of distributions for implementing the estimation algo-
rithm. The proposed MCMC procedure only needs to sample from a truncated normal distribution,
conditional on the latent variables considered for each member of the SMSN class.

More recently and from the likelihood-based inference viewpoint, Mattos et al. (2018) proposed
an efficient Monte Carlo EM (MCEM) algorithm to compute the ML estimates of the SMSN-CR
model based on the stochastic approximation of the EM (SAEM) algorithm. However, by its nature,
the SAEM algorithm is an expensive proposal, due to the combination of Monte Carlo simulations and
other iterative procedures, which make this algorithm challenging to assess the convergence and time
consuming. For this reason, our paper proposes an alternative analytically simple EM-type algorithm
for computing ML estimates of the skew-t censored regression (ST-CR) model. We show that the E-
step reduces to computing the first two moments of a certain truncated skew-t (TST) distribution. The
general formulas for these moments were recently derived by Lachos et al. (2020), for which we will
use the MomTrunc R package (Galarza et al., 2020). The likelihood function is easily computed as a
byproduct of the E-step and is used for monitoring convergence and for model selection. Furthermore,
we consider a general information-based method for obtaining the asymptotic covariance matrix of
the ML estimate. Our proposal has two advantages over the existing ones (i.e., MCEM and SAEM
algorithms). The first is that our EM-type algorithm is exact and does not require approximations
at the E and M steps. The second one is that our approach is less time-consuming with the same
precision (in terms of point estimation) related to its competitors.

The rest of the paper is organized as follows. In Section 2 we introduce some notation and outline
the main results related to the SN, ST and TST distributions. In Section 3, the ST censored regression
model (ST-CR) and related likelihood-based inference are presented, including the implementation
of an EM-type algorithm called the Expectation/Conditional Maximization Either (ECME) algorithm
(Liu and Rubin, 1994) for obtaining ML estimates of the parameters. Section 4 presents a simulation
study to illustrate the performance of the proposed method. Section 5 discusses an application using a
real data application on Letter-Name Fluency (LNF) test in Peruvian students, which is a standardized,
individually administered test that provides a measure of Letter-Name Knowledge (LNK) and spelling
abilities. Finally, Section 6 concludes with some discussion and possible directions for future research.

2. Notation and background

Throughout this paper, Np(µµµ,ΣΣΣ) denotes the p-variate normal distribution with mean vector µµµ and
covariance matrix ΣΣΣ; and φp(· | µµµ,ΣΣΣ) and Φp(· | µ,Σ) denote its probability density function (pdf) and
cumulative distribution function (cdf), respectively. When p = 1 we drop the index p. In this case, if
µ = 0 and σ2 = 1, we write φ(·) for the pdf and Φ(·) for the cdf. In the same way, Tp(µµµ,ΣΣΣ, ν) denotes
the p-variate Student’s-t distribution with mean vector µµµ ∈ Rp, scale matrix ΣΣΣ (a positive definite
matrix) and degrees of freedom ν ∈ (0,∞); and tp (· | µµµ,ΣΣΣ, ν) and Tp(· | µ,Σ, ν) denote its pdf and cdf,
respectively. Again, when p = 1 we drop the index p. In this case, if µ = 0 and σ2 = 1, we write
t(· | ν) for the pdf and T(· | ν) for the cdf. Finally, Gamma(ν/2, ν/2) denotes the Gamma distribution
with scale and shape parameters equal to ν/2.

We start defining the skew-normal (SN) distribution and then we introduce some useful properties.
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As defined by Azzalini (1985), a random variable Z has a skew-normal distribution with location
parameter µ ∈ R, scale parameter σ2 ∈ (0,∞) and skewness parameter λ ∈ R, denoted by Z ∼
SN(µ, σ2, λ), if its pdf is given by φS N(z | µ, σ2, λ) = 2φ(z | µ, σ2)Φ(λ(z − µ)/σ). We denote the cdf
of Z by ΦS N(·|µ, σ2, λ). If µ = 0 and σ2 = 1, we use φS N(· | λ) and ΦS N(· | λ) for the pdf and cdf,
respectively.

As proved by Azzalini and Dalla Valle (1996, Eqn. 2.11), the cdf of a skew-normal random vari-
able is given by

ΦS N

(
z | µ, σ2, λ

)
= 2Φ2

( z − µ
σ

e1

∣∣∣∣0,Σ) , (2.1)

where e1 = (1, 0)> and

Σ =

(
1 −δ
−δ 1

)
, with δ =

λ
√

1 + λ2
. (2.2)

If Z ∼ SN(µ, σ2, λ), then a convenient stochastic representation is given by

Z = µ + ∆T + Γ
1
2 T1, (2.3)

where ∆ = σδ, Γ = (1 − δ2)σ2, T = |T0|, and T0 and T1 are independent standard normal random
variables. Here, | · | denotes the absolute value. It is important to note that this stochastic represen-
tation is useful to generate random samples, obtaining moments as well as to derive other interesting
properties.

The next definition introduces the stochastic representation of a skew-t random variable.

Definition 1. Let Z ∼ S N(0, σ2, λ) and U ∼ Gamma(ν/2, ν/2) assuming that Z and U are indepen-
dent. We say that the distribution of Y = µ + U−1/2Z is a skew-t distribution with location parameter
µ ∈ R, scale parameter σ2 ∈ (0,∞), shape parameter λ ∈ R and degrees of freedom ν ∈ (0,∞). We
use the notation Y ∼ ST(µ, σ2, λ, ν).

From Definition 1, the density of Y takes the following form (Azzalini and Capitanio, 2003)

φST

(
y | µ, σ2, λ, ν

)
= 2t

(
y | µ, σ2, ν

)
T

( v + 1
d + ν

) 1
2

A

∣∣∣∣∣∣ν + 1

 ,
where A = λ(y − µ)/σ and d = (y − µ)2/σ2. Some particular cases of the skew-t distribution are
the skew-Cauchy distribution (ν = 1) and the Student’s-t distribution (λ = 0). Also, when ν → ∞,
the skew-normal distribution arises as a limit case. Moreover, from Definition 1, the conditional
distribution of Y given U is

Y | U = u ∼ SN
(
µ, u−1σ2, λ

)
, U ∼ Gamma

(
ν

2
,
ν

2

)
. (2.4)

Thus, from (2.1), we obtain the following expression for the cdf of a skew-t random variable:

ΦST

(
y | µ, σ2, λ, ν

)
= 2E

[
ΦΦΦ2

(
U

1
2

y − µ
σ

e1

) ∣∣∣∣0,ΣΣΣ]
= 2E

[
P

(
X ≤ U

1
2

y − µ
σ

e1

∣∣∣∣U)]
= 2P

(
X

U
1
2

≤
y − µ
σ

e1

)
= 2 T2

(y − µ
σ

e1

∣∣∣∣0,Σ, ν) ,



336 Victor H. Lachos, Jorge L. Bazán, Luis M. Castro, Jiwon Park

where e1 = (1, 0)>, X ∼ N2(0,Σ) and ΣΣΣ is given in (2.2).
In addition, from Basso et al. (2010), we have the following useful proposition related to a skew-t

random variable.

Proposition 1. Suppose Y ∼ S T (µ, σ2, λ, ν). Then, for r = 1, 2, . . .

1. Y | T = t, U = u ∼ N
(
µ + ∆t, u−1Γ

)
, T | U = u ∼ T Nb0,+∞c

(
0, u−1

)
, U ∼ Gamma

(
ν
2 ,

ν
2

)
,

2. T | Y = y, U = u ∼ T Nb0,+∞c
(
µT , u−1M2

T

)
,

3. γr = E[Ur | Y = y] =
2rΓ( ν+1+2r

2 )(ν+d)−r

Γ( ν+1
2 )

T
(
( ν+1+2r

ν+d )
1
2 A|ν+1+2r

)
T
(
( v+1

d+ν )
1
2 A|ν+1

) ,

4. τr = E

U r
2
φ
(
U

1
2 A

)
Φ

(
U

1
2 A

)
∣∣∣∣∣∣Y = y

 =
2

r−1
2 Γ( ν+1+r

2 )
π

1
2 Γ( ν+1

2 )(ν+d+A2)
ν+1+r

2

(ν+d)
ν+1

2

T
(
( v+1

d+ν )
1
2 A|ν+1

) ,

5. E[U T | Y = y] = γ1µT + MTτ1 and E[U T 2 | Y = y] = γ1µ
2
T + M2

T + µT MTτ1,

where M2
T = Γ/(Γ + ∆2), µT = {∆/(Γ+∆2)}(y−µ), A = λ(y − µ)/σ, d = (y−µ)2/σ2 and T Nba,bc(µ, σ2)

denotes the truncated normal distribution in the interval ba, bc. Here ba, bc means that each extreme
of the interval can be either open or closed.

Now, we introduce a key concept in our development, namely the truncated skew-t (TST) distri-
bution.

Definition 2. Let Y ∼ ST(µ, σ2, λ, ν), with P(a < Y < b) > 0 for some fixed a < b. A random variable
X has a TST distribution in the interval ba, bc, denoted by X ∼ TS T ba,bc(µ, σ2, λ, ν), if it has the same
distribution as Y |Y ∈ ba, bc.

As an obvious consequence of Definition 2, we have that the pdf of X ∼ TSTba,bc(µ, σ2, λ, ννν) is
given by:

φTS T

(
x | µ, σ2, λ, ν; ba, bc

)
=

φST

(
x|µ, σ2, λ, ν

)
ΦST

(
b|µ, σ2, λ, ν

)
− ΦST

(
a|µ, σ2, λ, ν

) Iba,bc (x) ,

where IB (y) denotes the indicator function, that is, IB(y) = 1 if y ∈ B and IB(y) = 0 otherwise.
An interesting property of the TST distribution is that it is a location-scale family. Indeed, let

X ∼ TSTbα,βc(0, 1, λ, ν), then Y = µ + σX has a TSTba,bc(µ, σ2, λ, ν) distribution, where a = µ + σα
and b = µ+σβ. Consequently, for computing moments of Y , it is enough to compute the moments of
X. Thus, the nth moment of Y is given by

E
[
Yn] =

n∑
k=0

n!
(n − k)! k!

σkµn−kE
[
Xk

]
, for n = 1, 2, 3 . . . .
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Lachos et al. (2020) provide explicit expressions for the two first moments of the TST distribution.
Let X ∼ TS Tba,bc(0, 1, λ, ν), with a < b. Then,

E[X] = τ(a, b)
[
L(1) {EΦ (−0.5, bλ) − EΦ (−0.5, aλ)}

−
{
EφS N (−0.5, b) − EφS N (−0.5, a)

}]
,

E[X2] = τ(a, b)
[{
EΦS N (−1, b) − EΦS N (−1, a)

}
− L(2)

{
Eφ (−1, bλ) − Eφ (−1, aλ)

}
−

{
bEφS N (−0.5, b) − aEφS N (−0.5, a)

}]
,

where τ (a, b) = {ΦST (b|λ, ν) − ΦST (a|λ, ν)}−1, aλ = a(1 + λ2)1/2, bλ = b(1 + λ2)1/2, L(s) = (2/π)1/2

λ/(1 + λ2)s/2, and

EφS N (r, q) =
2r+1ν

ν
2 Γ

(
ν+2r

2

)
√

2πΓ
(
ν
2

) (
q2 + ν

) ν+2r
2

T

(2r + ν

q2 + ν

) 1
2

λq

∣∣∣∣∣∣2r + ν

 ,
EΦS N (r, q) =

2r+1Γ
(
ν+2r

2

)
Γ
(
ν
2

)
νr

T2

(2r + ν

ν

) 1
2

qe1

∣∣∣∣∣∣0,ΣΣΣ, 2r + ν

 ,
EΦ (r, q) =

Γ
(
ν+2r

2

)
Γ
(
ν
2

) (
2
ν

)r

T

(2r + ν

ν

) 1
2

q

∣∣∣∣∣∣2r + ν

 ,
Eφ (r, q) =

Γ
(
ν+2r

2

)
Γ
(
ν
2

) √
2π

(
ν

2

) ν
2
(

q2 + ν

2

)− ν+2r
2

,

with Σ given in (2.2). The first two moments of Y = µ + σX are available through the MomTrunc R
package (Galarza et al., 2020). So far, this is the unique method to compute the moments of the TST,
among others truncated skewed (multivariate) distributions.

3. The skew-ttt censored linear regression model

Let us consider a linear regression model where the responses are observed with errors which are
independent and identically distributed (iid) according to some ST distribution, as follows:

Yi = x>i βββ + σεi, εi
iid
∼ ST(0, 1, λ, ν), i = 1, . . . , n, (3.1)

where Yi, i = 1, . . . , n are the responses, βββ = (β1, . . . , βp)> is a vector of regression parameters and
x>i = (xi1, . . . , xip) is a vector of covariates, such that xi j is the value of the jth explanatory variable

for subject i. Under this setup, we have that Yi
ind
∼ ST(x>i βββ, σ

2, λ, ν), i = 1, . . . , n. To facilitate the
mathematical derivations, we consider the case where left-censored observations can occur, that is,
the observations are of the form:

Yobsi =

{
κi, if Yi ≤ κi,
Yi, if Yi > κi,

(3.2)

i = 1, . . . , n, for some threshold point κi. The model defined in (3.1) and (3.2) is called the skew-
t linear censored regression (ST-CR) model (Massuia et al., 2017; Mattos et al., 2018), for further
details. Note that the right censored problem, as defined in the Introduction section, can be represented
by a left censored problem by transforming the response Yobsi to −Yobsi .
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3.1. Parameter estimation via an EM-type algorithm

In what follows, we use the traditional convention denoting a random variable by an upper case letter
and its realization by the corresponding lower case. Let θθθ = (βββ>, σ2, λ, ν)> be the vector with all
parameters of the ST-CR model. Supposing that are m censored values of the characteristic of interest,
we can partition the observed sample yobs in two subsamples of m censored and n − m uncensored
values, such that yobs = {κ1, . . . , κm, ym+1, . . . , yn}. Then, the log-likelihood (log-like) function is given
by

`(θθθ | yobs) = log

 n∏
i=1

[
ΦST

(
κi | x>i βββ, σ

2, λ, ν
)]Ii

[
φST

(
yi | x>i βββ, σ

2, λ, ν
)]1−Ii


=

m∑
i=1

log
[
ΦST

(
κi | x>i βββ, σ

2, λ, ν
)]

+

n∑
i=m+1

log
[
φST

(
yi | x>i βββ, σ

2, λ, ν
)]
,

where Ii = 1 if yi ≤ κi and Ii = 0 otherwise.
To estimate the parameters of the ST-CR model, an alternative is to maximize its log-likelihood

function directly. However, this procedure can be quite cumbersome. Mattos et al. (2018) propose to
compute the ML estimates by using SAEM algorithm. However, by its nature, MCEM is an expen-
sive proposition, due to the combination of Monte Carlo simulation and other iterative procedures.
Alternatively, in this work, we propose a simple EM-type algorithm (Dempster et al., 1977) to obtain
the ML estimates. To implement the EM algorithm, we need a representation of the model in terms of
missing data. In the case of censoring, we can consider the unobserved yi as a realization of the latent
unobservable variable Yi ∼ ST(x>i βββ, σ

2, λ, ν), i = 1, . . . ,m. Here, the key is to consider the augmented
data {yobs, y1, . . . , ym, u1, . . . , un, t1, . . . , tn}, that is, we treat the problem as if yL = (y1, . . . , ym)> were
in fact observed. As a consequence, we can use the representation (2.4) to obtain the complete-data
log-likelihood, given as

`c (θθθ | yobs, yL,u, t) = C −
n
2

log Γ +

n∑
i=1

log ui −
1

2Γ

n∑
i=1

ui

(
yi − x>i βββ − ∆ti

)2
+

n∑
i=1

log h(ui|ν),

where C is a constant that does not depend on the parameter of interest θθθ, u = (u1, . . . , un)>, t =

(t1, . . . , tn)> and h(·|ν) is the gamma density with scale and shape parameters equal to ν/2.
In what follows, the superscript (k) indicates the estimate of the related parameter at the stage k of

the algorithm. In the E-step of the algorithm, we must obtain the so-called Q-function:

Q
(
θθθ | θθθ(k)

)
= Eθθθ(k)

[
`c(θθθ | Yobs,YL,U,T) | yobs

]
,

where Eθθθ(k) means that the expectation is obtained using θθθ(k) instead of θθθ. Observe that the expression
of the Q-function is completely determined by the knowledge of the expectations

Ersi

(
θθθ(k)

)
= Eθθθ(k)

[
UiT r

i Y s
i | yobsi

]
, r, s = 0, 1, 2.

Thus, ignoring constants that do not depend on the parameter of interest, the Q-function can be written
in a synthetic form as follows:

Q
(
θθθ | θθθ(k)

)
= −

n
2

log Γ −
1

2Γ

n∑
i=1

[
E02i

(
θθθ(k)

)
− 2E01i

(
θθθ(k)

)
x>i βββ + E00i

(
θθθ(k)

) (
x>i βββ

)2

+ ∆2E20i

(
θθθ(k)

)
− 2∆E11i

(
θθθ(k)

)
+ 2∆E10i

(
θθθ(k)

)
x>i βββ

]
+

n∑
i=1

Eθθθ(k)
[
log h(Ui|ν) | yobsi

]
.
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The M-step consists of maximization of Q(θθθ | θθθ(k)) with respect to θθθ. To do so, we resort to a faster
extension of the original EM called the ECME algorithm (Liu and Rubin, 1994), replacing the M step
with a sequence of conditional maximization (CM) steps and maximizing the actual log-likelihood
function with respect to ν. Due to the CM step below, it is not necessary to compute the expectations
Eθθθ(k) [log h(Ui|ν) | yobsi ] . Thus, depending whether if the observation is censored or not and by using
known properties of conditional expectation, the expectations involved in the Q-function will take
specific, analytic and closed forms as follows:

1. Uncensored observation case. In this case, Yobsi = Yi ∼ ST(x>i βββ, σ
2, λ, ν) and from Proposition 1

(see also Basso et al., 2010), we have that

Ersi

(
θθθ(k)

)
= ys

i Eθθθ(k)
[
UiT r

i | yi
]
, s, r = 0, 1, 2, (3.3)

with

Eθθθ(k)
[
Ui | yi

]
= γ1

(
θθθ(k), yi

)
,

Eθθθ(k)
[
UiTi | yi

]
= γ1

(
θθθ(k), yi

)
µ(k)

Ti + M(k)
T τ1

(
θθθ(k), yi

)
and

Eθθθ(k)

[
Ui T 2

i | yi

]
= γ1

(
θθθ(k), yi

)
µ2(k)

Ti + M2(k)
T + µ(k)

Ti M(k)
T τ1

(
θθθ(k), yi

)
,

where M2(k)
T , µ(k)

Ti , γ1(θθθ(k), yi) and τ1(θθθ(k), yi) as defined in Proposition 1 with appropriate substitu-
tions.

2. Censored observation case. Here, we have that Yobsi = κi if and only if Yi ≤ κi. Then,

Ersi

(
θθθ(k)

)
= Eθθθ(k)

[
UiT r

i Y s
i | Yi ≤ κi

]
= Eθθθ(k)

[
Y s

i E
[
Ui

[
T r

i | Ui,Yi
]
| Yi

]
| Yi ≤ κi

]
, r, s = 0, 1, 2, (3.4)

where the conditional expectation in the second line of (3.4) is true because, if yi were available,
then it would be a realization of a ST(x>i βββ, σ

2, λ, ν) distribution and the expectation Eθθθ(k) [Ui|Yi,Yi ≤

κi] = Eθθθ(k) [Ui|Yi] in (3.3).

Finally, the expectation in (3.4) can be easily obtained by using the following Proposition:

Proposition 2. For a censored observation i = 1, 2, . . . ,m, the conditional moments Ersi(θθθ(k)), r, s =

0, 1, 2, are given by

E00i

(
θθθ(k)

)
= Eθθθ(k) [Ui | Yi ≤ κi] =

ΦST

(
κi | x>i βββ

(k), σ2∗(k), λ(k), ν + 2
)

ΦST

(
κi | x>i βββ(k), σ2(k), λ(k), ν

) ,

E0ri

(
θθθ(k)

)
= Eθθθ(k)

[
UiYr

i | Yi ≤ κi
]

=
ΦST

(
κi | x>i βββ

(k), σ2∗(k), λ(k), ν + 2
)

ΦST

(
κi | x>i βββ(k), σ2(k), λ(k), ν

) Eθθθ(k)
[
Wr

i
]
,
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E10i

(
θθθ(k)

)
= Eθθθ(k) [UiTi | Yi ≤ κi]

=
∆(k)

∆2(k) + Γ(k)

(
E01i

(
θθθ(k)

)
− E00i

(
θθθ(k)

)
x>i βββ

(k)
)

+

√
Γ(k)

∆2(k) + Γ(k) c
(
ν)WΦ(θθθ(k)

)
,

E20i(θθθ(k)) = Eθθθ(k)

[
UiT 2

i | Yi ≤ κi

]
=

(
∆(k)

∆2(k) + Γ(k)

)2 (
E02i

(
θθθ(k)

)
− 2E01i

(
θθθ(k)

)
x>i βββ

(k) +
(
x>i βββ

)2
E00i

(
θθθ(k)

))
+

√
Γ(k)

∆2(k) + Γ(k)

(
∆(k)

∆2(k) + Γ(k)

)
c(ν)WΦ

(
θθθ(k)

) (
Eθθθ(k) (S i) − x>i βββ

(k)
)

+
Γ(k)

∆2(k) + Γ(k) ,

E11i

(
θθθ(k)

)
= Eθθθ(k) [UiTiYi | Yi ≤ κi]

=

(
∆(k)

∆2(k) + Γ(k)

) (
E02i

(
θθθ(k)

)
− E01i

(
θθθ(k)

)
x>i βββ

(k)
)

+

√
Γ(k)

∆2(k) + Γ(k) WΦ

(
θθθ(k)

)
Eθθθ(k) (S i),

where

WΦ

(
θθθ(k)

)
=

ΦST

(
κi | x>i βββ

(k), σ2(k)
∗∗ , 0, ν + 1

)
ΦST

(
κi|x>i βββ(k), σ2(k), λ(k), ν

) ,

Wi ∼ TSTb−∞,κic

(
x>i βββ

(k), σ2∗(k), λ(k), ν + 2
)
, S i ∼ TSTb−∞,κic

(
x>i βββ

(k), σ2(k)
∗∗ , 0, ν + 1

)
,

σ2∗ =
ν

ν + 2
σ2(k), σ2(k)

∗∗ =
ν

(ν + 1)(1 + λ2(k))
σ2(k), and c(ν) =

2Γ( ν+1
2 )

Γ( ν2 )
√
ν(1 + λ2)π

.

Proof: The proof follows from the conditional expectation property given in (3.4) along with the
conditional expectations given in Proposition 1. 2

Thus, the EM algorithm for the ST-CR model, defined in (3.1) and (3.2), can be summarized in
the following way:

1. E-step: Given θθθ = θθθ(k). For i = 1, . . . , n.

- If the observation i is uncensored then, for r, s = 0, 1, 2, compute Ersi(θθθ(k)) given in (3.3);

- If the observation i is censored then, for r, s = 0, 1, 2, compute Ersi(θθθ(k)) in (3.4) by using Propo-
sition 2.

2. CM-step: Update θθθ(k) by maximizing Q(θθθ | θθθ(k)) over θθθ, which leads to the following expressions

βββ(k+1) =

 n∑
i=1

E00i(θθθ(k))xix>i

−1 n∑
i=1

xi

(
E01i

(
θθθ(k)

)
− ∆E10i

(
θθθ(k)

))
,

∆(k+1) =

∑n
i=1

(
E11i

(
θθθ(k)

)
− E10i

(
θθθ(k)

)
x>i βββ

(k+1)
)

∑n
i=1 E20i

(
θθθ(k)

) ,

Γ(k+1) =
1
n

n∑
i=1

[
E02i

(
θθθ(k)

)
− 2E01i

(
θθθ(k)

)
x>i βββ

(k+1) + E00i

(
θθθ(k)

) (
x>i βββ

(k+1)
)2

+∆2(k+1)E20i

(
θθθ(k)

)
− 2∆(k+1)E11i

(
θθθ(k)

)
+ 2∆(k+1)E10i

(
θθθ(k)

)
x>i βββ

(k+1)
]
,



ST-CR model 341

3. CML-step: Update ν(k) by maximizing the actual marginal log-likelihood function, obtaining

ν(k+1) = arg max
ν

 n∑
i=1

log
[
ΦST

(
κi | x>i βββ

(k+1), σ2(k+1), λ(k+1), ν
)]

+

n∑
i=m+1

log φST

(
yi | x>i βββ

(k+1), σ2(k+1), λ(k+1), ν
) .

This process is iterated until some distance involving two successive evaluations of the actual log-
likelihood `(θθθ|yobs), like |`(θθθ(k+1)|yobs) − `(θθθ(k)|yobs)| or |`(θθθ(k+1)|yobs)/`(θθθ(k)|yobs) − 1|, is small enough.
The optimization step related to ν can be easily accomplished by using the optim routine in the R
software after a double integration procedure. Note that σ2(k) and λ(k) can be obtained from ∆(k) and
Γ(k), by considering

σ2(k) = Γ(k) + ∆2(k) and λ(k) =
∆(k)

√
Γ(k)

. (3.5)

Assuming complete data, i.e., ignoring censoring, we used ordinary least squares (OLS) estimators
as initial estimates of βββ(0) and the moment estimator for σ2(0) by using the R function lm(). For λ(0),
we considered twice the signal of the skewness coefficient of the residuals, and finally, ν(0) was fixed
at 3.

3.2. Model selection

To select an appropriate model from the candidates, we adopted the Akaike information criterion
(AIC) (Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz, 1978), the consistent AIC
(CAIC) (Bozdogan, 1987) and the Hannan-Quinn information criterion (HQIC) (Burnham and An-
derson, 2002).

Like the more popular AIC and BIC, which are the two most widely used model selection in-
dices based on penalized likelihood and applicable for both nested and non-nested models, the model
selection criteria considered in this work have the form −2`(θ̂θθ) + ρcn, where θ̂θθ is the ML estimate
obtained via the EM algorithm, `(θθθ) = `(θθθ|yobs) is the actual log-likelihood, ρ is the number of free
parameters that have to be estimated in the model and the penalty term cn is a convenient sequence
of positive numbers that depends on the sample size n. Specifically we have AIC = −2`(θ̂θθ) + 2ρ,
BIC = −2`(θ̂θθ) + ρ log(n), HQIC = −2`(θ̂θθ) + 2ρ log(log(n)) and CAIC = −2`(θ̂θθ) + ρ(log(n) + 1). A
lower AIC, BIC, HQIC or CAIC value indicates that a closer fit of the model to the data.

3.3. Approximate standard errors

The standard errors of the ML estimates can be approximated by the inverse of the observed infor-
mation matrix. Unfortunately, in our case, there is no a closed-form available for this matrix. Thus,
we consider the same strategy used by Garay et al. (2017a) to get approximate standard errors of the
parameter estimates based on the empirical information matrix by assuming ν known. Let Yobs be
the vector of observed data. Then, considering θθθ = (βββ, σ2, λ), Ycomp = (Yobs,YL,U,T)> and relations
described in the Equation (3.5), the empirical information matrix is defined as

Ie (θθθ | yobs) =

n∑
i=1

s
(
yobsi | θθθ

)
s>

(
yobsi | θθθ

)
−

1
n

S (yobs | θθθ) S> (yobs | θθθ) ,
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where S> (yobs | θθθ) =
∑n

i=1 s
(
yobsi | θθθ

)
. It can be noted from the result of Louis (1982) that the individ-

ual score can be determined as

s
(
yobsi | θθθ

)
=
∂Qi

(
θθθ|θθθ(k)

)
∂θθθ

, i = 1, . . . , n.

Thus, substituting the ML estimates of θθθ in (3.6), the empirical information matrix Ie(θθθ|yobs) is reduced
to

Ie

(
θ̂θθ | Yobs

)
=

n∑
i=1

ŝiŝ>i ,

where ŝi = (ŝβββi , ŝσ2
i
, ŝλλλi ) is an individual score vector and

ŝβββi =
1 + λ̂2

σ̂2

xiE01i

(
θ̂θθ
)
− E00i

(
θ̂θθ
)

xix>i β̂ββ − σ̂
λ̂√

1 + λ̂2
xiE10i

(
θ̂θθ
) ,

ŝσ2
i

= −
1

2σ̂2 +
1+λ̂2

2σ̂4

(
E02i

(
θ̂θθ
)
−2E01i

(
θ̂θθ
)

x>i β̂ββ + E00i

(
θ̂θθ
) (

x>i β̂ββ
)2
)
−
λ̂
√

1+λ̂2

2σ̂3

(
E11i

(
θ̂θθ
)
− E10i

(
θ̂θθ
)

x>i β̂ββ
)
,

ŝλi =
λ̂

1+λ̂2
−
λ̂

σ̂2

(
E02i

(
θ̂θθ
)
− 2E01i(θ̂θθ)x>i β̂ββ + E00i

(
θ̂θθ
) (

x>i β̂ββ
)2
)

+
1 + 2λ̂2

σ̂
√

1 + λ̂2

(
E11i

(
θ̂θθ
)
− E10i

(
θ̂θθ
)

x>i β̂ββ
)

− λ̂E20i

(
θ̂θθ
)
,

for i = 1, . . . , n, where the conditional expectations Ersi(ω(k)) = Eθθθ(k) [UiT r
i Y s

i | Yi ≤ κi], r, s = 0, 1, 2,
can be easily obtained directly from the proposed EM algorithm.

4. Simulation studies

In this section, we present three simulations studies. In the first one, we study the performance of EM
estimates under different censoring proportions. The second simulation study investigates whether
the model comparison measures, AIC, BIC, CAIC, and HQIC determine the best-fitting model to the
simulated data. The third study compares the performance of ML estimates obtained through EM and
SAEM algorithms. For each scenario, 100 Monte Carlo samples were generated, and the data were
artificially generated from the ST-CR model defined in (3.1) and (3.2), with xT

i = (1, xi1, xi2), such
that xi1 ∼ U(1, 5) and xi2 ∼ U(−1, 1), for i = 1, . . . , n.

4.1. Performance of EM estimates

This first simulation study is built to analyze the impact of the censoring level on the estimates of
the ST-CR model. We consider three censoring levels, say, 5%, 10% and 20%. In a first part of this
simulation study, each Monte Carlo sample is composed of a n = 1000 random draws from the ST-CR
model, with the following parameters: β = (β1, β2, β3)T = (1, 2, 3)T , σ2 = 1, λ = −2 and ν = 4. From
the generated data, in order to define the censored cases, we follow two steps: First, we sorted the
observations in ascending order, and then the cases were defined as censored if the percentage of the
observations below the fixed threshold was equal to the corresponding censoring level.

We computed the average values (MC Mean) and standard deviations (MC sd) across the estimates
of the 100 Monte Carlo samples. Also, the average values of the approximate standard errors of the
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Table 1: Results based on 100 simulated ST samples with n = 1000

Cens
5% 10% 20%

β0 (1) 1.03 1.03 1.03
IM SE 0.08 0.08 0.09
MC sd 0.09 0.09 0.09
β1 (2) 2.00 2.00 2.00
IM SE 0.02 0.02 0.02
MC sd 0.02 0.02 0.03
β2 (3) 3.00 3.00 2.99
IM SE 0.04 0.04 0.05
MC sd 0.17 0.17 0.15
σ2(1) 1.09 1.09 1.09
IM SE 0.10 0.10 0.11
MC sd 0.04 0.04 0.04
λ (−2) −2.21 −2.21 −2.18
IM SE 0.28 0.28 0.29
MC sd 0.37 0.36 0.31
ν (4) 4.27 4.33 4.37

IM SE - -
MC sd 0.76 0.77 0.79

The reported values are the MC means, and the MC sd are the standard deviations from fitting the ST-CR with different
settings of censoring proportions. IM SE is the average value of the approximate standard error obtained through the
information-based method. Cens indicates the censoring rate.

EM estimates were computed through the method described in Subsection 3.3. Table 1 shows the
results for different censoring levels. We can see from this table that the EM-type algorithm recovers
the original values of the parameters for all levels of censoring, closely. We also observe from this
table that the estimates of the standard errors (IM SE) and MC standard deviations (MC sd) give
relatively close results, showing that the proposed asymptotic approximation for the variance of the
EM estimates is reliable.

The second part of this study is devoted to analyze the finite sample properties of the EM estimates
under the same parameters setting. In this case, we fix the censoring level increasing the sample size,
say, n = 200, 500, and 1000 for each Monte Carlo sample. Figure 1 shows boxplots of the EM
estimates under the ST-CR model with censoring rate of 10%. We can see that the increased sample
size corresponds to a decreasing bias and variability of the parameter estimates revealing that the
ML estimates obtained via the proposed EM algorithm have consistent asymptotic properties. This
tendency remains when we change the censoring rate.

4.2. Regression models comparison

In this simulation scheme, we compare the performance of some classic model comparison criteria
to select the appropriate model among four different right-censored regression models, namely, the
normal (N-CR), Student’s-t (T-CR), skew-normal (SN-CR) and skew-t (ST-CR) models. In order to
enhance the reliability of the model selection, we used well-known criteria, AIC, BIC, CAIC, and
HQIC, explained in Subsection 3.2 to select the proper model. Table 2 shows the arithmetic average
of these comparison measures. Note that all the measures favor the ST-CR model, indicating that the
ST-CR model is generally more robust to deviations from the model assumptions and fits better than
other candidates when neither is the true generating model. Figure 2 represents the AIC, BIC, CAIC,
and HQIC values for each sample and model with a left-censoring level of 10%. From this figure, we
can see that in 100% of the cases all the model selection criteria select the ST-CR model, as expected.
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Figure 1: Boxplot of the estimates of β0, β1, β2, σ2, λ and ν (line indicates the true value of the parameter) for
the ST-CR model. Legend in (a): the first three boxplots correspond to the left-censoring level of c = 5% with

n = 200, 500, 1,000, respectively. The boxplots for c = 10%, 20% are defined as similar way.

Table 2: Model selection criteria for comparing N-CR, SN-CR, T-CR and ST-CR models under three different
censoring proportions

Censoring Criteria N-CR SN-CR T-CR ST-CR

5%

log-like −1400.080 −1320.192 −1320.621 −1274.855
AIC 2808.160 2652.385 2651.242 2561.711
BIC 2827.791 2681.831 2675.781 2591.157

CAIC 2831.791 2687.831 2680.781 2597.157
HQIC 2815.621 2663.577 2660.568 2572.903

10%

log-like −1327.306 −1261.528 −1257.535 −1217.715
AIC 2662.612 2535.056 2525.070 2447.429
BIC 2682.243 2564.502 2549.609 2476.876

CAIC 2686.243 2570.502 2554.609 2482.876
HQIC 2670.073 2546.247 2534.396 2458.621

20%

log-like −1188.030 −1139.859 −1132.080 −1099.499
AIC 2384.060 2291.719 2274.161 2210.997
BIC 2403.691 2321.165 2298.699 2240.444

CAIC 2407.691 2327.165 2303.699 2246.444
HQIC 2391.521 2302.911 2283.487 2222.189

4.3. Comparison between SAEM and EM algorithms

In this simulation study, we compare the ML estimates obtained via the proposed EM-algorithm
and SAEM (Mattos et al., 2018). The parameter setting is the same as the previous simulation with
censoring level 20% and the sample size for each Monte Carlo sample is n = 500. The initial values of
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Figure 2: AIC, BIC, CAIC and HQIC values for 100 samples and left-censoring level of 10%. Black curve:
N-CR, red curve: T-CR, green curve: SN-CR and purple curve: ST-CR.

Table 3: MC means and MC standard deviations (in parentheses) of the ML estimates obtained through the EM
and the SAEM algorithms

Algorithm β1 β2 σ2 λ ν log-like Time (min)

SAEM 1.9866 2.9997 1.1900 −2.2938 5.7270 −541.8204 1.4450
(0.0364) (0.0672) (0.1727) (0.4411) (1.6433) (18.4327) (0.7873)

EM 1.9880 3.0022 1.2102 −2.3056 6.1596 −542.0523 0.5565
(0.0367) (0.0673) (0.1859) (0.4230) (1.7823) (18.6224) (0.5450)

the EM algorithm were obtained as discussed in Subsection 3.1 with a maximum number of iterations
max.iter = 400. In addition, we chose the parameters m = 20 (Monte Carlo sample size), c = 0.3
(cut-off point) and S = 400 (maximum number of iterations) for the SAEM implementation. The
results are given in Table 3, where we can see that the ML estimates of the parameters obtained
through the EM and the SAEM algorithms are close, as expected. However, the SAEM algorithm
requires, in average, 3 times longer that the EM algorithm to reach the convergence. Consequently,
we can conclude that our proposal provides the same accuracy as other competitors but with less
computational time for obtaining ML estimates.

5. Application

LNK has been identified to be an important predictor of learning to read, spelling abilities, phono-
logical awareness and intelligence (see, for example, Foulin (2005), Ritchey and Speece (2006) and
references there in). However, not only LNK is considered as a predictor of spelling achievements, but
also the speed of children in letter naming. This is another letter-name related skill closely associated
to reading achievement (Cronin and Carver, 1998). A frequently used procedure considered by school
teachers to measure LNK is based on LNF. In this case, teachers administer timed 1-minute fluency
assessments to children, and then compare the results with established norms in order to determine
how the students are performing in this task and if they are at risk for future academic problems. Ob-
serve that LNF is a continuous variable related to the average of letters read correctly in an interval of
time and not a discrete variable.

In general, LNF can be considered a measure of risk (Marston and Magnusson, 1988) because
it is highly predictive of later reading success. It is also included as an indicator for students with
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Table 4: LNF data. Summary statistics of LNF response and proportions for explanatory variables by
uncensored and censored groups

Variable Statistics Uncensored Censored Total

LNF

n 479 32 511
mean 30.674 39.844 31.249

median 28 31 29
sd 16.228 20.718 16.669

min 1 28 1
max 98 99 99

skewness 1.265 2.124 1.412
kurtosis 2.567 3.075 3.131

Zone rural 0.313 0.312 0.313
Grade 3rd 0.290 0.281 0.290
Gender female 0.501 0.500 0.501

lower scores, who may require additional instructional support on their Early Literacy Skills (ELS).
Additionally, LNF has been recognized as the best predictor of future reading and spelling abilities
in children, and analyzing it, a benchmark can be obtained to determine the minimum level of sat-
isfactory progress of spelling achievements by a student. However, LNF presents some challenges.
Due to the time limit, some students may not complete the assessments while others will finish them
before the set time. This situation generates that, if the teachers are interested in the average of
the letters/words/sentences/paragraphs correctly read, the time limit restriction has to be taken into
account. In other words, the students who finish the task in less than 1-minute could read more let-
ters/words/sentences/paragraphs, and the reported mean corresponding to the correctly read objects
could not be the real one. The situation described above corresponds to the typical case of right
censored observations.

In this paper, we analyze LNF data set from the Early Grade Reading Assessment (EGRA), which
is part of (RTI-FDA, 2008) instrument. Here, the response variable LNF is defined as the number
of correctly letters read by the students in one minute and it presents right censored observations.
Consequently, if we are interested in the mean of the LNF response for one group, this quantity
could be underestimated due to the presence of censored observations. For that reason, a censored
regression model able to take into account observation lying below or above a threshold could be
more appropriated for estimating the true mean of the LNF response for different groups of interest.

Table 4 shows a summary of the response variable in the presence (Censored) and absence (Uncen-
sored) of censoring. Note that 6.26% of the observations are censored, and the mean and the standard
deviation of them are higher in comparison with uncensored observations. Therefore, the mean of
31.3 for the LNF response (letters correctly read per minute) showed in Table 4 seems to be underes-
timated. Further, we can observe some degree of right skewness and kurtosis on the response variable
reveling a departure from the normal distribution and then other distribution must be considered for
the data.

Additionally, three socio-demographic covariates for the students are considered in the LNF data,
namely, the Zone where the respondent lives (0 = Urban, 1 = Rural), Grade (0 = 2nd grade, 1 = 3rd
grade) and Gender (0 = Male, 1 = Female). Note that the proportions for rural zone, 3rd grade and
female on the censored and uncensored groups are similar. Since the explanatory variables are all
dummy variables, we expect to understand the effects of these covariates on the LNF response.

To investigate the behavior of the LNF in the Peruvian sample, and taking into account the cen-
soring effect, we fit four different right-censored regression models, namely, the normal (N-CR),
Student’s-t (T-CR), skew-normal (SN-CR) and skew-t (ST-CR) models. Particularly, the proposed
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Table 5: LNF data: Model selection criteria
Model # parameters log-like AIC BIC CAIC HQIC
N-CR 5 −2058.962 4127.923 4149.105 4154.105 4136.227
SN-CR 6 −2007.738 4027.475 4052.894 4058.894 4037.44
T-CR 6 −2023.104 4058.208 4083.626 4089.626 4068.173
ST-CR 7 −1995.336 4004.672 4034.327 4041.327 4016.298
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Figure 3: LNF data: Martingale-type residuals under the (a) N-CR, (b) T-CR, (c) SN-CR and (d) ST-CR models.
The envelope is obtained through simulation.

censored model is given by:

Yi = β0 + β1Zonei + β2Gradei + β3Genderi + σεi, i = 1, . . . , n, (5.1)

where the error term εi is independent for all i = 1, . . . , n and follows some of the distributions
previously mentioned with location and scale parameters equal to 0 and 1, respectively.

Table 5 compares the fit of the four proposed models using the model selection criteria discussed
in Subsection 3.2. Considering these results, we observe that the ST-CR model outperforms all its
competitors (N-CR, SN-CR and T-CR). This conclusion is also corroborated by Figure 3, where we
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Table 6: LNF data. ML estimates under SN-CR and ST-CR models. SE is the corresponding standard error
SN-CR ST-CR

Parameter Estimate SE Estimate SE
Intercept β0 12.706 1.323 14.813 1.349

Zone β1 −4.675 1.510 −4.713 1.291
Grade β2 5.972 1.323 6.192 1.253
Gender β3 −0.159 1.206 0.032 1.137

σ2 659.596 44.616 377.295 44.522
λ 3.800 0.599 2.710 0.509
ν - - 5.184 -
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Figure 4: LNF data: Plot of the log-likelihood vs. Iterations of the EM-type algorithm under the (a) SN-CR and
(b) ST-CR models.

present the plot of the Martingale-type residuals including a simulated envelope (Mattos et al., 2018)
for the T-CR, SN-CR and ST-CR models (See also Figure 1). It can be seen that the skew-t distribution
accommodates the observations in a better way than its competitors.

Table 6 reports the ML estimates for the parameters of the best two models according to the
previous analyses, i.e., the SN-CR and ST-CR models, along with their corresponding standard errors
calculated via the empirical information matrix (Subsection 3.3).

Using a tolerance of ε = 10−5 as stopping criterion, the algorithm attained convergence in 32
iterations and 2.58 seconds for the SN-CR model, and 27.61 seconds and 25 iterations for the ST-CR
model, this on an Intel Core i7-6700, CPU @ 3.40GHz computer with 8 GB of RAM. The monotone
convergence of the parameter estimates via the proposed EM algorithm is illustrated in Figure 4,
where we can see that the log-likelihood increases in successive iterates of the EM algorithm.

Note from Table 6 that the covariate Gender can be considered non significant. The covariate Zone
has a negative effect in favor of rural schools and covariate Grade has a positive effect in the students
of the 3rd grade. As a conclusion, it can be stated that students from urban schools and the 3rd grade
read correctly more letters than students from rural schools and the second grade.

By considering these results, we fitted an additional ST-CR model without the covariate Gender.
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The resulting fitted model is the following:

Ŷi ∼ ST
(
µ̂ = 14.831 − 4.714Zonei + 6.192Gradei, σ̂

2 = 377.164, λ̂ = 2.709, ν̂ = 5.182
)
,

i = 1, . . . , 511, where the model comparison criteria are: Log-Likelihood = −1995.335, AIC =

4002.671, BIC = 4028.089, CAIC = 4034.089 and HQ = 4012.635.
It is worth mentioning that, under this model, the mean of the number of correct letters read by

the Peruvian students in the sample, under the censored model, is 32.29, while when the censoring
mechanism is omitted, the mean is 31.2 That is, if censored is not taken into consideration for model-
ing the LNF, the mean of the number of correct letters can be sub estimated. Since this kind of test is
used frequently, we recommend to incorporate the censoring pattern in order to estimate the statistics
of Fluency conveniently. Additionally, the summary of the estimated response variable is Min=1 and
Max = 122.81 where quartile 1 is 21, median is 29 and quartile 3 is 42. Values which can be used to
propose different criteria to classify the LNF.

6. Conclusions

In this paper, a novel exact EM-type algorithm for skew-t censored linear regression model is devel-
oped. In contrast with previous developments (MCEM and MCMC algorithms), the proposed EM-
type algorithm uses analytical expressions at the E-step, that rely on formulas of the mean and variance
of a truncated skew-t distribution. These formulas have been developed by Lachos et al. (2020) and
are available in the R package MomTrunc (Galarza et al., 2018). As an added benefit of the proposal,
the EM likelihood sequence is monotonic and the difficulties in assessing convergence, which face
Monte Carlo algorithms, are avoided. Furthermore, simulations studies and the analysis of the LNF
dataset provides strong evidence about the implementation of the EM-type algorithm for fitting the
ST-CR model. The method proposed in this paper is implemented in R, and the code is available for
download from GitHub repository (https://github.com/hlachos/skewt-censored) .

Finally, some extensions of the current work includes the multivariate ST-CR model and finite
mixture of censored skew-t models (Azzalini and Capitanio, 1999; Lachos et al., 2017). An in-depth
investigation of such extensions is beyond the scope of the present paper, but certainly an interesting
topic for future research.
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