• Title/Summary/Keyword: H-Infinity

Search Result 80, Processing Time 0.02 seconds

Study on the Active Vibration Control of Magnetic Bearing System using $H_{\infty}$ Controller (능동 자기 베어링 제어를 위한 $H_{\infty}$ 제어기 설계)

  • 고무일;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.303-306
    • /
    • 1997
  • Magnetic bearings have been adopted to support the rotor by electromagnetic force without mechanical contact and have many advantages. The application of the magnetic bearings have become more and more widespread in recent years. But magnetic bearings require feedback control for stable operation because they are inherently open loop unstable systems. In this study, H infinity controller has been applied for rotor-magnetic bearing system for vibration control. The result showed that H infinity controller has better performance than PID controller through simulations.

  • PDF

Optimal Control Design for an Active Control System Considering a Stroke of a Hybrid Mass Damper (복합형 질량 감쇠기의 운동거리를 고려한 능동제어시스템의 최적설계)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.196-201
    • /
    • 1999
  • In active control of structures the stroke of a Hybrid Mass Damper is the one of he main constraints of the system because there is limited installation space available in the structure. To design an optimal controller for a HMD system control objective are defined considering these constraints and effectiveness of H-infinity control method with bilinear transform that satisfies the defined objective is examined for the optimum efficiency. Numerical results show that the proposed H-infinity controller satisfies the constraints and provides optimal performance.

  • PDF

Design of a Discrete-Time $H_{\infty}$ Controller with Preview Action (예견 기능을 가진 이산시간 $H_{\infty}$ 제어기의 설계)

  • Choi, Jin-Tae;Kim, Jong-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 1997
  • 이산기간 H/sub .inf./ 제어에 의한 최적 예견제어기를 제안한다. 기존의 H/sub .inf./ 제어기는 미지의 외란만 고려한 것이고, LQ 에 의한 예견제어기는 예견 가능한 외란과 미지의 외란이 동시에 가해지는 동적 시스템의 전달함수 행렬의 infinity 놈의 최소화하는 피드백제어기가 동시에 설계된다. 제어기의 설계는 full-information H/sub .inf./ 제어 이론을 따르나, 그 유도 과정은 LQ 에 기초한 예견제어기와 유사하게 이루어진다. 설계된 H/sub .inf./ 예견 게인 행렬은 LQ 예견 게인 행렬과 유사한 구조를 갖는다. 전달함수 행렬의 infinity 놈이 .inf.로 갈수록 H/sub .inf./ 예견 게인 행렬은 LQ에 의한 것에 접근한다. LQ 예견 게인 행렬은 H/sub .inf./ 예견 게인 행렬의 부분 집합임이 입증한다.

  • PDF

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

Modal-based mixed vibration control for uncertain piezoelectric flexible structures

  • Xu, Yalan;Qian, Yu;Chen, Jianjun;Song, Gangbing
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.229-244
    • /
    • 2015
  • H-infinity norm relates to the maximum in the frequency response function and H-infinity control method focuses on the case that the vibration is excited at the fundamental frequency, while 2-norm relates to the output energy of systems with the input of pulses or white noises and 2-norm control method weighs the overall vibration performance of systems. The trade-off between the performance in frequency-domain and that in time-domain may be achieved by integrating two indices in the mixed vibration control method. Based on the linear fractional state space representation in the modal space for a piezoelectric flexible structure with uncertain modal parameters and un-modeled residual high-frequency modes, a mixed dynamic output feedback control design method is proposed to suppress the structural vibration. Using the linear matrix inequality (LMI) technique, the initial populations are generated by the designing of robust control laws with different H-infinity performance indices before the robust 2-norm performance index of the closed-loop system is included in the fitness function of optimization. A flexible beam structure with a piezoelectric sensor and a piezoelectric actuator are used as the subject for numerical studies. Compared with the velocity feedback control method, the numerical simulation results show the effectiveness of the proposed method.

An Analysis on Worst-case State Estimation in Standard H$\infty$ State-Space Solution

  • Choi, Youngjin;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.56-59
    • /
    • 1996
  • Worst-case state estimation will be proposed in this paper. By using the worst-case disturbance and worst-case state estimation, we can obtain right/left constrained coprime factors. If constrained coprime factors are used in designing a controller, the infinity-norm of closed-loop transfer matrix can be smaller than any constant .gamma.(> .gamma.$_{opt}$) without matrix dilation optimization. The derivation of left/right constrained coprime factors is achieved by doubly coprime factorization for the plant constrained by the infinity norm. And the parameterization of stabilizing controllers gives us easily understanding for H$_{\infty}$ control theory.ry.

  • PDF

Position Control of a Stewart Platform Using Approximate Inverse Dynamics (근사역동역학을 이용한 스튜어트플랫폼의 위치제어)

  • Lee, Se-Han;Song, Jae-Bok;Park, Woo-Chun;Hong, Dae-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.993-1000
    • /
    • 2001
  • Configuration-dependent nonlinear coefficient matrices in the dynamic equation of robot manipulator impose computa- tional burden in real-time implementation of tracking control based on the inverse dynamics controller. However, parallel manipulators such as Stewart platform have relatively small workspace compared to serial manipulators. Based on the characteristics of small motion range. nonlinear coefficient matrices can be approxiamted to constant ones. The modeling errors caused by such approximation are compensated for by H-infinity controller that treats the modeling errors disturbance. The proposed inverse dynamics controller with approximate dynamics combined with H-infinity control shows good tracking performance even for fast tracking control in which computation of full inverse dynamics is not easy to implement.

  • PDF

Active TMD systematic design of fuzzy control and the application in high-rise buildings

  • Chen, Z.Y.;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.577-585
    • /
    • 2021
  • In this research, a neural network (NN) method was developed, which combines H-infinity and fuzzy control for the purpose of stabilization and stability analysis of nonlinear systems. The H-infinity criterion is derived from the Lyapunov fuzzy method, and it is defined as a fuzzy combination of quadratic Lyapunov functions. Based on the stability criterion, the nonlinear system is guaranteed to be stable, so it is transformed to be a linear matrix inequality (LMI) problem. Since the demo active vibration control system to the tuning of the algorithm sequence developed a controller in a manner, it could effectively improve the control performance, by reducing the wind's excitation configuration in response to increase in the cost efficiency, and the control actuator.

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use

  • Park, S.J.;Lee, J.;Jung, H.J.;Jang, D.D.;Kim, S.D.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.313-332
    • /
    • 2009
  • This paper numerically and experimentally investigates the control performance of the active mass damper (AMD) systems in a 26-story high-rise building in use. This is the first full-scale application of the AMD system for suppressing the wind-induced vibration of a building structure in Korea. In addition, the AMD system was installed on top of the building already in use, which may be the world's first implementation case. In order to simultaneously mitigate the transverse-torsional coupled vibration of the building, two AMD systems were applied. Moreover, the H-infinity control algorithm has been developed to utilize the maximum capacity of the AMD system. From the results of numerical simulation using the wind load obtained from the wind tunnel tests, it was found that the maximum acceleration responses of the building were reduced significantly. Moreover, the control performance of the installed AMD system was examined by carrying out the free and forced vibration tests. The acceleration responses on top of the building in the controlled case measured under strong wind loads were compared with those in the uncontrolled case numerically simulated by using the wind load deduced from the measured data and a structural model of the building. It is demonstrated that the AMD system shows good control performance in reducing the building accelerations.