• Title/Summary/Keyword: H gene

Search Result 3,992, Processing Time 0.036 seconds

Relationship between the Polymorphisms of 5' Regulation Region of Prolactin Gene and Milk Traits in Chinese Holstein Dairy Cows

  • Li, J.T.;Wang, A.H.;Chen, P.;Li, H.B.;Zhang, C.S.;Du, L.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.459-462
    • /
    • 2006
  • Prolactin (PRL) plays an important role in promoting mammalian mammary gland development, and milk production during lactation. Therefore the PRL gene was chosen as a candidate gene for milk traits in Holstein dairy cows. PCR-SSCP and PCR-RFLP were used to analyze genetic variations in the 5' regulation region of the PRL gene. In this part of the gene, two new polymorphic sites were detected in the Chinese Holstein dairy cows. One was a XbaI-RFLP locus, and the other was an SSCP locus. Statistical analysis showed that the XbaI-RFLP locus and the SSCP locus had a significant positive effect on milk traits.

Subcellular Localization of Catalase Encoded by the ctl+ Gene in Schizosaccharomyces pombe

  • Lee, Sang-il;Lee, Joon;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.156-159
    • /
    • 2000
  • The cttl+ gene in Schizosaccharomyces pombe encoeds a catalse responsible for H2O2-resistance of this organism as judged by the H2O2-sensitive phenotype of the ctt1Δ mutant. In this study, we investigated the subcellular localization of the Ctt1 gene product. In wild type cells catalase activity was detected in the organelle fraction as well as in the cytosol. The ctt1Δ mutant contained no catalase activity, indicating that both cytosolic and organellar catalases are the products of a single ctt1+ gene. Western bolt analysis revealed two catalase bands, both of which disappeared in the ctt1Δ mutant. The major, fastermigrating band existed in the cytosol whereas the monor, slower-migrating band appeared to be located in organelles, most likely in peroxisomes. These results suggest that the ctt1+ gene product targeted to the peroxisome is a modified form of the one in the cytosol.

  • PDF

Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3

  • Wang, Jian-Rong;Li, Yang-Yuan;Liu, Danni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.845-855
    • /
    • 2015
  • The present study describes the gene cloning and high-level expression of an alkaline and thermostable lipase gene from Trichosporon coremiiforme V3. Nucleotide analysis revealed that this lipase gene has an open reading frame of 1,692 bp without any introns, encoding a protein of 563 amino acid residues. The lipase gene without its signal sequence was cloned into plasmid pPICZαA and overexpressed in Pichia pastoris X33. The maximum lipase activity of recombinant lipase was 5,000 U/ml, which was obtained in fed-batch cultivation after 168 h induction with methanol in a 50 L bioreactor. The purified lipase showed high temperature tolerance, and being stable at 60℃ and kept 45% enzyme activity after 1 h incubation at 70℃. The stability, effects of metal ions and other reagents were also determined. The chain length specificity of the recombinant lipase showed high activity toward triolein (C18:1) and tripalmitin (C16:0).

Human Organic Anion Transporting Polypeptide 1B3 Applied as an MRI-Based Reporter Gene

  • Song-Ee Baek;Asad Ul-Haq;Dae Hee Kim;Hyoung Wook Choi;Myeong-Jin Kim;Hye Jin Choi;Honsoul Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.726-735
    • /
    • 2020
  • Objective: Recent innovations in biology are boosting gene and cell therapy, but monitoring the response to these treatments is difficult. The purpose of this study was to find an MRI-reporter gene that can be used to monitor gene or cell therapy and that can be delivered without a viral vector, as viral vector delivery methods can result in long-term complications. Materials and Methods: CMV promoter-human organic anion transporting polypeptide 1B3 (CMV-hOATP1B3) cDNA or CMV-blank DNA (control) was transfected into HEK293 cells using Lipofectamine. OATP1B3 expression was confirmed by western blotting and confocal microscopy. In vitro cell phantoms were made using transfected HEK293 cells cultured in various concentrations of gadoxetic acid for 24 hours, and images of the phantoms were made with a 9.4T micro-MRI. In vivo xenograft tumors were made by implanting HEK293 cells transfected with CMV-hOATP1B3 (n = 4) or CMV-blank (n = 4) in 8-week-old male nude mice, and MRI was performed before and after intravenous injection of gadoxetic acid (1.2 µL/g). Results: Western blot and confocal microscopy after immunofluorescence staining revealed that only CMV-hOATP1B3-transfected HEK293 cells produced abundant OATP1B3, which localized at the cell membrane. OATP1B3 expression levels remained high through the 25th subculture cycle, but decreased substantially by the 50th subculture cycle. MRI of cell phantoms showed that only the CMV-hOATP1B3-transfected cells produced a significant contrast enhancement effect. In vivo MRI of xenograft tumors revealed that only CMV-hOATP1B3-transfected HEK293 tumors demonstrated a T1 contrast effect, which lasted for at least 5 hours. Conclusion: The human endogenous OATP1B3 gene can be non-virally delivered into cells to induce transient OATP1B3 expression, leading to gadoxetic acid-mediated enhancement on MRI. These results indicate that hOATP1B3 can serve as an MRI-reporter gene while minimizing the risk of long-term complications.

New Gene Cluster from Thermophile Bacillus fordii MH602 for Conversion of DL-5-Substituted Hydantoins to L-Amino Acids

  • Mei, Yan-Zhen;Wan, Yong-Min;He, Bing-Fang;Ying, Han-Jie;Ouyang, Ping-Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1497-1505
    • /
    • 2009
  • The thermophile Bacillus fordii MH602 was screened for stereospecifically hydrolyzing DL-5-substituted hydantoins to L-$\alpha$-amino acids. Since the reaction occurs at higher temperature, the advantages for enhancement of substrate solubility and for racemization of DL-5-substituted hydantoins during the conversion were achieved. The hydantoin metabolism gene cluster from thermophile is firstly reported in this paper. The genes involved in hydantoin utilization (hyu) were isolated on an 8.2-kb DNA fragment by restriction site-dependent PCR, and six ORFs were identified by DNA sequence analysis. The hyu gene cluster contained four genes with novel cluster organization characteristics: the hydantoinase gene hyuH, putative transport protein gene hyuP, hyperprotein gene hyuHP, and L-carbamoylase gene hyuC. The hyuH and hyuC genes were heterogeneously expressed in E. coli. The results indicated that hyuH and hyuC are involved in the conversion of DL-5-substituted hydantoins to an N-carbamyl intermediate that is subsequently converted to L-$\alpha$-amino acids. Hydantoinase and carbamoylase from B. fordii MH602 compared respectively with reported hydantoinase and carbamoylase showed the highest identities of 71% and 39%. The novel cluster organization characteristics and the difference of the key enzymes between thermopile B. fordii MH602 and other mesophiles were presumed to be related to the evolutionary origins of concerned metabolism.

In vitro Arsanilic Acid Induction of Apoptosis in Rat Hepatocytes

  • Yuan, Hui;Gong, Zhi;Yuan, li-Yun;Han, Bo;Han, Hong-Ryul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1328-1334
    • /
    • 2006
  • This paper aimed to study the toxicity of arsanilic acid on rat primary hepatocytes in vitro by a modification of the perfusion method. The conditions included concentrations of 0, 1.085, 10.85, 108.5, 1,085 and 10,850 mg/kg arsanilic acid in RPMI 1,640 medium at rat hepatocytes plates respectively, each group had five repeats at $37^{\circ}C$ for 48 h. The rat primary hepatocytes survival ratio, DNA Ladder, activities of glutathione peroxidase (GSH-px), superoxide dismutase (SOD) and catalase (CAT) in hepatocytes, activity of SOD in the medium and the expression of gene bax in hepatocytes were measured at 12 h, 24 h and 48 h respectively. The results showed that arsanilic acid decreased the activities of GSH-px and SOD, and increased the activity of CAT in all dosages, and affected as positive DNA ladder. Although the SOD activities of both hepatocytes and medium in 1.085 mg/L arsanilic acid were significantly lower than the base line at 12 h, CAT activity in 10.85 mg/L arsanilic acid was significantly higher than the base line at 48 h, and all of the DNA ladders were positive, which means 1.085 mg/L arsanilic acid induced apoptosis at 24 h. The gene expression of bax was significantly upregulated in 1.085 mg/L arsanilic acid or higher for 24 h.The parameters in 1,085 mg/L and 10,850 mg/L arsanilic acid had more severe changes than the others at any time indicating that these levels of arsanilic acid were toxic hazards for hepatocyte survival. It was concluded that arsanilic acid induced a dosage- and time-dependent gene expression of bax, 1.085 mg/L arsanilic acid could be involved in rat liver cell apoptosis at 24 h. Arsanilic acid as additives in livestock feed could present potential toxic implications for farm animals.

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells

  • Kwon, Haw-Young;Dae, Hyun-Mi;Song, Na-Ri;Kim, Kyoung-Sook;Kim, Cheorl-Ho;Lee, Young-Choon
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.