Browse > Article
http://dx.doi.org/10.1007/s10059-009-0012-4

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells  

Kwon, Haw-Young (Department of Biotechnology, Dong-A University)
Dae, Hyun-Mi (Department of Biotechnology, Dong-A University)
Song, Na-Ri (Department of Biotechnology, Dong-A University)
Kim, Kyoung-Sook (Brain Korea 21 Center for Silver-Bio Industrialization, Dong-A University)
Kim, Cheorl-Ho (Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University)
Lee, Young-Choon (Department of Biotechnology, Dong-A University)
Abstract
In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.
Keywords
human GD3 synthase; SK-N-BE(2)-C; transcription factor; Valproic acid;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chen, F., Castranova, V., and Shi, X. (2001). New insights into the role of nuclear factor-κB in cell growth regulation. Am. J. Pathol. 159, 387-397   DOI   ScienceOn
2 Cheung, N.K., Saarinen, U.M., Neely, J.E., Landmeier, B., Donovan, D., and Coccia, P.F. (1985). Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res. 45, 2642-2649   PUBMED
3 Hakomori, S. (1981). Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50, 733-764   DOI   PUBMED   ScienceOn
4 Hakomori, S., and Igarashi, Y. (1993). Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv. Lipid Res. 25, 147-162   PUBMED
5 Johannessen, C.U. (2000). Mechanisms of action of valproate: a commentatory. Neurochem. Int. 37, 103-110   DOI   ScienceOn
6 Kang, N.Y., Kang, S.K., Lee, Y.C., Choi, H.J., Lee, Y.S., Cho, S.Y., Kim, Y.S., Ko, J.H., and Kim, C.H. (2006). Transcriptional regulation of the human GD3 synthase gene expression in Fasinduced Jurkat T cells: a critical role of transcription factor NF-$\kappa$B in regulated expression. Glycobiology 16, 375-389   DOI   ScienceOn
7 Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A., and Klein, P.S. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741   DOI   ScienceOn
8 Yuan, P.X., Huang, L.D., Jiang, Y.M., Gutkind, J.S., Manji, H.K., and Chen, G. (2001). The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem. 276, 31674-31683   DOI   ScienceOn
9 Stockhausen, M.T., Sjölund, J., Manetopoulos, C., and Axelson, H. (2005). Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br. J. Cancer 92, 751-759   DOI   ScienceOn
10 Varki, A. (1993). Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97-130   DOI   PUBMED   ScienceOn
11 Cinatl, J.Jr., Cinatl, J., Scholz, M., Driever, P.H., Henrich, D., Kabickova, H., Vogel, J.U., Doerr, H.W., and Kornhuber, B. (1996). Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs 7, 766-773   DOI   PUBMED   ScienceOn
12 Gratsa, A., Rooprai, H.K., Rogers, J.P., Martin, K.K., and Pilkington, G.J. (1997). Correlation of expression of NCAM and GD3 ganglioside to motile behavior in neoplastic glia. Anticancer Res. 17, 4111-4118   PUBMED
13 Gurvich, N., Tsygankova, O.M., Meinkoth, J.L., and Klein, P.S. (2004). Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64, 1079-1086   DOI   ScienceOn
14 Svennerholm, L. (1980). Gangliosides and synaptic transmission. Adv. Exp. Med. Biol. 125, 533-544   PUBMED
15 Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969-6978   DOI   ScienceOn
16 Blaheta, R.A., Michaelis, M., Driever, P.H., and Cinatl, J. Jr. (2005). Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med. Res. Rev. 25, 383-397   DOI   ScienceOn
17 Kang, N.Y., Kim, C.H., Kim, K.S., Ko, J.H., Lee, J.H., Jeong, Y.K., and Lee, Y.C. (2007). Expression of the human CMP-NeuAc: GM3 alpha2,8-sialyltransferase (GD3 synthase) gene through the NF-kappaB activation in human melanoma SK-MEL-2 cells. Biochim. Biophys. Acta 1769, 622-630   DOI   PUBMED   ScienceOn
18 Rogawski, M.A., and Loscher, W. (2004). The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553-564   DOI   ScienceOn
19 Chen, G., Yuan, P.X., Jiang, Y.M., Huang, L.D., and Manji, H.K. (1999). Valproate robustly enhances AP-1 mediated gene expression. Mol. Brain Res. 64, 52-58   DOI   ScienceOn
20 Cinatl, J.Jr., Cinatl, J., Driever, P.H., Kotchetkov, R., Pouckova, P., Kornhuber, B., and Schwabe, D. (1997). Sodium valproate inhibits in vivo growth of human neuroblastoma cells. Anticancer Drugs 8, 958-963   DOI   PUBMED   ScienceOn
21 Cinatl, J.Jr., Kotchetkov, R., Blaheta, R., Driever, P.H., Vogel, J.U., and Cinatl, J. (2002). Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: enhancement by combination with interferon-alpha. Int. J. Oncol. 20, 97-106   PUBMED
22 Beecken, W.D., Engl, T., Ogbomo, H., Relja, B., Cinatl, J., Bereiter- Hahn, J., Oppermann, E., Jonas, D., and Blaheta, R.A. (2005). Valproic acid modulates NCAM polysialylation and polysialyltransferase mRNA expression in human tumor cells. Int. Immunopharmacol. 5, 757-769   DOI   ScienceOn
23 Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-$\kappa$B puzzle. Cell 109, S81-S96   DOI   ScienceOn