• Title/Summary/Keyword: H%2A-algebra

Search Result 106, Processing Time 0.024 seconds

CAUCHY-RASSIAS STABILITY OF A GENERALIZED ADDITIVE MAPPING IN BANACH MODULES AND ISOMORPHISMS IN C*-ALGEBRAS

  • Shin, Dong Yun;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.617-630
    • /
    • 2011
  • Let X, Y be vector spaces, and let r be 2 or 4. It is shown that if an odd mapping $f:X{\rightarrow}Y$ satisfies the functional equation $${\hspace{50}}rf(\frac{\sum_{j=1}^{d}\;x_j} {r})+\;{\sum\limits_{\iota(j)=0,1 \atop {\sum_{j=1}^{d}}\;{\iota}(j)=l}}\;rf(\frac{\sum_{j=1}^{d}{(-1)^{\iota(j)}x_j}}{r}) \\({\ddag}){\hspace{160}}=(_{d-1}C_l-_{d-1}C_{l-1}+1)\;{\sum\limits_{j=1}^{d}\;f(x_j)}$$ then the odd mapping $f:X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation in Banach modules over a unital $C^*$-algebra. As an application, we show that every almost linear bijection $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ of a unital $C^*$-algebra ${\mathcal{A}}$ onto a unital $C^*$-algebra ${\mathcal{B}}$ is a $C^*$-algebra isomorphism when $h(2^nuy)=h(2^nu)h(y)$ for all unitaries $u{\in}{\mathcal{A}}$, all $y{\in}{\mathcal{A}}$, and $n=0,1,2,{\cdots}$.

A NOTE ON A WEYL-TYPE ALGEBRA

  • Fernandez, Juan C. Gutierrez;Garcia, Claudia I.
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.269-277
    • /
    • 2016
  • In a paper of S. H. Choi [2], the author studied the derivations of a restricted Weyl Type non-associative algebra, and determined a 1-dimensional vector space of derivations. We describe all the derivations of this algebra and prove that they form a 3-dimensional Lie algebra.

USEFUL OPERATORS ON REPRESENTATIONS OF THE RATIONAL CHEREDNIK ALGEBRA OF TYPE 𝔰𝔩 n

  • Shin, Gicheol
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.421-433
    • /
    • 2019
  • Let n denote an integer greater than 2 and let c denote a nonzero complex number. In this paper, we introduce a family of elements of the rational Cherednik algebra $H^{sl_n}(c)$ of type $sl_n$, which are analogous to the Dunkl-Cherednik elements of the rational Cherednik algebra $H^{gl_n}(c)$ of type $gl_n$. We also introduce the raising and lowering element of $H^{sl_n}(c)$ which are useful in the representation theory of the algebra $H^{sl_n}(c)$, and provide simple results related to these elements.

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.

Separating sets and systems of simultaneous equations in the predual of an operator algebra

  • Jung, Il-Bong;Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.311-319
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operaors on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the $weak^*$ topology on $L(H)$. Note that the ultraweak operator topology coincides with the $weak^*$ topology on $L(H)$ (see [5]).

  • PDF

COMPACT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.255-260
    • /
    • 2010
  • Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. We show the following : Let Alg$\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let x = $(x_i)$ and y = $(y_i)$ be vectors in H. Then the following are equivalent: (1) There exists a compact operator A = $(a_{ij})$ in Alg$\mathcal{L}$ such that Ax = y. (2) There is a sequence ${{\alpha}_n}$ in $\mathbb{C}$ such that ${{\alpha}_n}$ converges to zero and for all k ${\in}$ $\mathbb{N}$, $y_1 = {\alpha}_1x_1 + {\alpha}_2x_2$ $y_{2k} = {\alpha}_{4k-1}x_{2k}$ $y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}+x_{2k+2}$.

ON THE FAILURE OF GORENSTEINESS FOR THE SEQUENCE (1, 125, 95, 77, 70, 77, 95, 125, 1)

  • Ahn, Jeaman
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.537-543
    • /
    • 2015
  • In [9], the authors determine an infinite class of non-unimodal Gorenstein sequence, which includes the example $$\bar{h}_1\text{ = (1, 125, 95, 77, 71, 77, 95, 125, 1)}$$. They raise a question whether there is a Gorenstein algebra with Hilbert function $$\bar{h}_2\text{= (1, 125, 95, 77, 70, 77, 95, 125, 1)}$$, which has remained an open question. In this paper, we prove that there is no Gorenstein algebra with Hilbert function $\bar{h}_2$.

REPRESENTATION AND DUALITY OF UNIMODULAR C*-DISCRETE QUANTUM GROUPS

  • Lining, Jiang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.575-585
    • /
    • 2008
  • Suppose that D is a $C^*$-discrete quantum group and $D_0$ a discrete quantum group associated with D. If there exists a continuous action of D on an operator algebra L(H) so that L(H) becomes a D-module algebra, and if the inner product on the Hilbert space H is D-invariant, there is a unique $C^*$-representation $\theta$ of D associated with the action. The fixed-point subspace under the action of D is a Von Neumann algebra, and furthermore, it is the commutant of $\theta$(D) in L(H).

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?

SELF-ADJOINT INTERPOLATION ON Ax = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • PARK, DONGWAN;PARK, JAE HYUN
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2006
  • Given vectors x and y in a separable Hilbert space H, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate self-adjoint interpolation problems for vectors in a tridiagonal algebra: Let AlgL be a tridiagonal algebra on a separable complex Hilbert space H and let $x=(x_i)$ and $y=(y_i)$ be vectors in H.Then the following are equivalent: (1) There exists a self-adjoint operator $A=(a_ij)$ in AlgL such that Ax = y. (2) There is a bounded real sequence {$a_n$} such that $y_i=a_ix_i$ for $i{\in}N$.

  • PDF