UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALG $\mathcal L$

Young Soo Jo and Joo Ho Kang

ABSTRACT. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation $Ax_i=y_i$ for $i=1,2,\cdots,n$. In this article, we investigate unitary interpolation problems in CSL-Algebra $\text{Alg}\mathcal{L}$: Let \mathcal{L} be a commutative subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} . When does there exist a unitary operator A in $\text{Alg}\mathcal{L}$ such that Ax=y?

1. Introduction

Let C be a collection of operators acting on a Hilbert space \mathcal{H} and let x and y be vectors on \mathcal{H} . An interpolation question for C asks for which x and y is there a bounded operator $T \in C$ such that Tx = y. A variation, the 'n-vector interpolation problem', asks for an operator T such that $Tx_i = y_i$ for fixed finite collections $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [5]. In case \mathcal{U} is a nest algebra, the (onevector) interpolation problem was solved by Lance [7]: his result was extended by Hopenwasser [1] to the case that \mathcal{U} is a CSL-algebra. Munch [8] obtained conditions for interpolation in case T is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser [2] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra.

We establish some notations and conventions. A subspace lattice \mathcal{L} is a strongly closed lattice of projections acting on a Hilbert space \mathcal{H} . A subspace lattice \mathcal{L} is a commutative subspace lattice, or CSL if all

Received November 30, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases: unitary interpolation problem, subspace lattice, CSL-algebra $\mathrm{Alg}\mathcal{L}.$

projections in \mathcal{L} are commutative. We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, then Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} and called a CSL-algebra. Let x and y be vectors in a Hilbert space. Then $\langle x,y\rangle$ means the inner product of vectors x and y. In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

We investigate unitary interpolation problems in CSL-Algebra $Alg\mathcal{L}$: Given two vectors x and y in a Hilbert space \mathcal{H} , when does there exist a unitary operator in CSL-Algebra $Alg\mathcal{L}$ such that Ax = y?

2. Results

Let \mathcal{H} be a Hilbert space and \mathcal{L} be a commutative subspace lattice of orthogonal projections acting on \mathcal{H} containing 0 and I. Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. An operator U is unitary if $UU^* = U^*U = I$, where I is the identity operator acting on \mathcal{H} .

THEOREM 1. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} . If there is an operator A in $Alg\mathcal{L}$ such that Ax = y, A is unitary and every E in \mathcal{L} reduces A, then

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i y\|}{\|\sum_{i=1}^{n} \alpha_i E_i x\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty,$$

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i x\|}{\|\sum_{i=1}^{n} \alpha_i E_i y\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty$$

and

$$\langle Ey, y \rangle = \langle Ex, x \rangle$$

for all E in \mathcal{L} .

Proof. By Theorem 1 [4],

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i y\|}{\|\sum_{i=1}^{n} \alpha_i E_i x\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty$$

and

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i x\|}{\|\sum_{i=1}^{n} \alpha_i E_i y\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty.$$

Since
$$Ax = y$$
 and A is unitary, $x = A^*y$. So $\langle Ey, y \rangle = \langle EAx, y \rangle = \langle Ex, A^*y \rangle = \langle Ex, x \rangle$ for all E in \mathcal{L} .

THEOREM 2. Let \mathcal{L} be a commutative subspace lattice on a Hilbert space \mathcal{H} . Let x and y be vectors in \mathcal{H} . Assume that

$$\mathcal{M}_0 = \left\{ \sum_{i=1}^n lpha_i E_i x : n \in \mathbb{N}, lpha_i \in \mathbb{C} \ ext{and} \ E_i \in \mathcal{L}
ight\}$$

and

$$\mathcal{M}_1 = \left\{ \sum_{i=1}^n lpha_i E_i y : n \in \mathbb{N}, lpha_i \in \mathbb{C} \ ext{and} \ E_i \in \mathcal{L}
ight\}$$

are dense in \mathcal{H} . If

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i y\|}{\|\sum_{i=1}^{n} \alpha_i E_i x\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty,$$

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i x\|}{\|\sum_{i=1}^{n} \alpha_i E_i y\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty$$

and

$$\langle Ey, y \rangle = \langle Ex, x \rangle$$

for all E in \mathcal{L} , then there is an operator A in $Alg\mathcal{L}$ such that Ax = y, A is unitary and every E in \mathcal{L} reduces A.

Proof. By Theorem 2 [4], there are operators A and B in Alg \mathcal{L} such that Ax = y, x = By, A and B are invertible and every E in \mathcal{L} reduces A and B. We want to show that $A^* = B$. Since $\langle Ey, y \rangle = \langle Ex, x \rangle$ for all E in \mathcal{L} ,

$$\left\langle A(\sum_{i=1}^{n} \alpha_i E_i x), y \right\rangle = \left\langle \sum_{i=1}^{n} \alpha_i E_i y, y \right\rangle$$
$$= \left\langle \sum_{i=1}^{n} \alpha_i E_i x, x \right\rangle,$$

 $n \in \mathbb{N}, \alpha_i \in \mathbb{C}$ and $E_i \in \mathcal{L}$. So $\langle Af, y \rangle = \langle f, x \rangle$ for all f in \mathcal{M}_0 . Since \mathcal{M}_0 is dense in \mathcal{H} , $A^*y = x$. So

$$A^*(\sum_{i=1}^n \alpha_i E_i y) = \sum_{i=1}^n \alpha_i E_i A^* y$$
$$= \sum_{i=1}^n \alpha_i E_i x,$$

 $n \in \mathbb{N}$, $\alpha_i \in \mathbb{C}$ and $E_i \in \mathcal{L}$. Since \mathcal{M}_1 is dense in \mathcal{H} , $A^* = B$. Hence A is unitary.

THEOREM 3. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . and let $x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n$ be vectors in \mathcal{H} . If there is an operator A in $Alg\mathcal{L}$ such that $y_j = Ax_j (j = 1, 2, \dots, n)$, every E in \mathcal{L} reduces A and A is unitary, then

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}: m_i\!\in\!\mathbb{N}, l\!\leq\!n, \alpha_{k,i}\!\in\!\mathbb{C} \text{ and } E_{k,i}\!\in\!\mathcal{L}\right\}<\infty,$$

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}: m_i\in\mathbb{N}, l\leq n, \alpha_{k,i}\in\mathbb{C} \text{ and } E_{k,i}\in\mathcal{L}\right\}<\infty$$

and $\langle Ey_p, y_q \rangle = \langle Ex_p, x_q \rangle$ for all E in \mathcal{L} and $p, q = 1, 2, \dots, n$.

Proof. By Theorem 3 [4],

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}: m_i \in \mathbb{N}, l \leq n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C}\right\} < \infty$$

and

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}: m_i\in\mathbb{N}, l\leq n, E_{k,i}\in\mathcal{L} \text{ and } \alpha_{k,i}\in\mathbb{C}\right\}<\infty.$$

Since $Ax_p = y_p$, A is unitary and every E in \mathcal{L} reduces A,

$$\langle Ey_p, y_q \rangle = \langle EAx_p, y_q \rangle$$

$$= \langle AEx_p, y_q \rangle$$

$$= \langle Ex_p, A^*y_q \rangle$$

$$= \langle Ex_p, x_q \rangle$$

for all E in \mathcal{L} and all $p, q = 1, 2, \dots, n$.

THEOREM 4. Let \mathcal{L} be a commutative subspace lattice on a Hilbert space \mathcal{H} . and let $x_1, \dots, x_n, y_1, \dots, y_n$ be vectors in \mathcal{H} . Assume that

$$\mathcal{U}_0 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l lpha_{k,i} E_{k,i} x_i : m_i \in \mathbb{N}, l \leq n, lpha_{k,i} \in \mathbb{C} ext{ and } E_{k,i} \in \mathcal{L}
ight\}$$

and

$$\mathcal{U}_1 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i : m_i \in \mathbb{N}, l \leq n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

are dense in H. If

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}:m_i\!\in\!\mathbb{N},l\!\leq\!n,\alpha_{k,i}\!\in\!\mathbb{C}\text{ and }E_{k,i}\!\in\!\mathcal{L}\right\}<\infty,$$

$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|} : m_i \in \mathbb{N}, l \leq n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\} < \infty$$

and $\langle Ey_p, y_q \rangle = \langle Ex_p, x_q \rangle$ for all E in \mathcal{L} and all $p, q = 1, 2, \dots, n$, then there is an operator A in $Alg\mathcal{L}$ such that $Ax_j = y_j$ for all $j = 1, \dots, n$, A is unitary and every E in \mathcal{L} reduces A.

Proof. By Theorem 4 [4], there are operators A, B in Alg \mathcal{L} such that $Ax_q = y_q$, $y_q = Bx_q$ $(q = 1, 2, \dots, n)$, A and B are invertible and every E in \mathcal{L} reduces A and B. We know that $A^{-1} = B$. We want to prove that $A^* = B$. Since $\langle Ey_p, y_j \rangle = \langle Ex_p, x_j \rangle$ for E in \mathcal{L} and $p, j = 1, 2, \dots, n$,

$$\begin{split} \left\langle A(\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i), y_j \right\rangle &= \left\langle \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} A x_i, y_j \right\rangle \\ &= \left\langle \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i, y_j \right\rangle \\ &= \left\langle \sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} x_i, x_j \right\rangle. \end{split}$$

Since U_0 is dense in \mathcal{H} , $\langle Af, y_j \rangle = \langle f, x_j \rangle$ for all f in \mathcal{H} and all $j = 1, 2, \dots, n$. So $A^*y_j = x_j$ for all $j = 1, 2, \dots, n$. Since

$$A^*(\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i) = \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i$$

and \mathcal{U}_1 is dense in \mathcal{H} , $A^* = B$. Hence A is unitary.

If we modify the proofs of Theorems 3 and 4 a little bit, then we can get the following theorems. So we omit their proofs.

THEOREM 5. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} . and let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . If there is an operator A in $Alg\mathcal{L}$ such that $Ax_n = y_n$ $(n = 1, 2, \cdots)$, A is unitary and every E in \mathcal{L} reduces A, then

$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|} : m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\} < \infty,$$

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}:m_i,l\in\mathbb{N},\alpha_{k,i}\in\mathbb{C}\text{ and }E_{k,i}\in\mathcal{L}\right\}<\infty$$

and $\langle Ey_p, y_j \rangle = \langle Ex_p, x_j \rangle$ for all E in \mathcal{L} and all $p, j = 1, 2, \cdots$.

THEOREM 6. Let \mathcal{L} be a commutative subspace lattice on a Hilbert space \mathcal{H} . Assume that

$$\mathcal{K}_0 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l lpha_{k,i} E_{k,i} x_i : m_i, l \in \mathbb{N}, lpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

and

$$\mathcal{K}_1 = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} lpha_{k,i} E_{k,i} y_i : m_i, l \in \mathbb{N}, lpha_{k,i} \in \mathbb{C} ext{ and } E_{k,i} \in \mathcal{L}
ight\}$$

are dense in H. If

$$\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}: m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L}\right\} < \infty,$$

$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|} : m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\} < \infty$$

and $\langle Ey_p, y_j \rangle = \langle Ex_p, x_j \rangle$ for all E in \mathcal{L} and all $p, j = 1, 2, \dots$, then there is an operator A in $Alg\mathcal{L}$ such that $Ax_n = y_n \ (n = 1, 2, \dots)$, A is unitary and every E in \mathcal{L} reduces A.

In the following theorem, we consider a "corona-type" version of unitary interpolation problem in CSL-Algebra $Alg\mathcal{L}$.

THEOREM 7. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let x_1, \dots, x_n and y be vectors in \mathcal{H} . Assume that

$$\left\{ \sum_{i=1}^{l} \alpha_i E_i y : l \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\}$$

and

$$\left\{ \sum_{i=1}^{l} \alpha_{i} E_{i} x_{k} : l \in \mathbb{N}, \alpha_{i} \in \mathbb{C} \text{ and } E_{i} \in \mathcal{L} \right\}$$

are dense in \mathcal{H} for all $k = 1, 2, \dots, n$. If

$$\sup \left\{ \frac{\|\sum_{i=1}^{l} \alpha_i E_i y\|}{\|\sum_{i=1}^{l} \alpha_i E_i x_k\|} : l \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty,$$

$$\sup \left\{ \frac{\|\sum_{i=1}^{l} \alpha_i E_i x_k\|}{\|\sum_{i=1}^{l} \alpha_i E_i y\|} : l \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty$$

and $\frac{1}{n^2}\langle Ey,y\rangle = \langle Ex_k,x_k\rangle$ for all E in $\mathcal L$ and all $k=1,2,\cdots,n$, then there are operators A_1,\cdots,A_n in $Alg\mathcal L$ such that $A_1x_1+A_2x_2+\cdots+A_nx_n=y$, A_k is unitary and every E in $\mathcal L$ reduces A_k for each $k=1,2,\cdots,n$.

References

- [1] A. Hopenwasser, The equation Tx = y in a reflexive operator algebra, Indiana Univ. Math. J. **29** (1980), 121–126.
- [2] _____, Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. (4), 33 (1989), 657-672.
- [3] Y. S. Jo, and J. H. Kang, Interpolation problems in CSL-Algebra AlgL to appear in Rocky Mountain Journal.
- [4] _____, Invertible Interpolation Problems in CSL-Algebra AlgL, to appear.
- [5] R. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
- [6] E. Katsoulis, R. L. Moore, T. T. Trent, Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory 29 (1993), 115–123.
- [7] E. C. Lance, Some properties of nest algebras, Proc. London Math. Soc. (3) 19 (1969), 45-68.
- [8] N. Munch, Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407–418.

Young Soo Jo, Department of Mathematics, Keimyung University, Taegu 704-701, Korea

E-mail: ysjo@kmu.ac.kr

Joo Ho Kang, Department of Mathematics, Taegu University, Taegu 712-714, Korea

E-mail: jhkang@daegu.ac.kr